Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Does dark matter cause mass extinctions and geologic upheavals?

19.02.2015

Research by New York University Biology Professor Michael Rampino concludes that Earth's infrequent but predictable path around and through our Galaxy's disc may have a direct and significant effect on geological and biological phenomena occurring on Earth. In a new paper in Monthly Notices of the Royal Astronomical Society, he concludes that movement through dark matter may perturb the orbits of comets and lead to additional heating in the Earth's core, both of which could be connected with mass extinction events.

The Galactic disc is the region of the Milky Way Galaxy where our solar system resides. It is crowded with stars and clouds of gas and dust, and also a concentration of elusive dark matter--small subatomic particles that can be detected only by their gravitational effects.

Previous studies have shown that Earth rotates around the disc-shaped Galaxy once every 250 million years. But the Earth's path around the Galaxy is wavy, with the Sun and planets weaving through the crowded disc approximately every 30 million years.

Analyzing the pattern of the Earth's passes through the Galactic disc, Rampino notes that these disc passages seem to correlate with times of comet impacts and mass extinctions of life. The famous comet strike 66 million ago that led to the extinction of the dinosaurs is just one example.

What causes this correlation between Earth's passes through the Galactic disc, and the impacts and extinctions that seem to follow?

While traveling through the disc, the dark matter concentrated there disturbs the pathways of comets typically orbiting far from the Earth in the outer Solar System, Rampino observes. This means that comets that would normally travel at great distances from the Earth instead take unusual paths, causing some of them to collide with the planet.

But even more remarkably, with each dip through the disc, the dark matter can apparently accumulate within the Earth's core. Eventually, the dark matter particles annihilate each other, producing considerable heat. The heat created by the annihilation of dark matter in Earth's core could trigger events such as volcanic eruptions, mountain building, magnetic field reversals, and changes in sea level, which also show peaks every 30 million years.

Rampino therefore suggests that astrophysical phenomena derived from the Earth's winding path through the Galactic disc, and the consequent accumulation of dark matter in the planet's interior, can result in dramatic changes in Earth's geological and biological activity.

His model of dark matter interactions with the Earth as it cycles through the Galaxy could have a broad impact on our understanding of the geological and biological development of Earth, as well as other planets within the Galaxy.

"We are fortunate enough to live on a planet that is ideal for the development of complex life," Rampino says. "But the history of the Earth is punctuated by large scale extinction events, some of which we struggle to explain. It may be that dark matter - the nature of which is still unclear but which makes up around a quarter of the universe - holds the answer. As well as being important on the largest scales, dark matter may have a direct influence on life on Earth."

In the future, he suggests, geologists might incorporate these astrophysical findings in order to better understand events that are now thought to result purely from causes inherent to the Earth. This model, Rampino adds, likewise provides new knowledge of the possible distribution and behaviour of dark matter within the Galaxy.

Media Contact

James Devitt
james.devitt@nyu.edu
212-998-6808

 @nyuniversity

http://www.nyu.edu 

James Devitt | EurekAlert!

More articles from Physics and Astronomy:

nachricht From rocks in Colorado, evidence of a 'chaotic solar system'
23.02.2017 | University of Wisconsin-Madison

nachricht Prediction: More gas-giants will be found orbiting Sun-like stars
22.02.2017 | Carnegie Institution for Science

All articles from Physics and Astronomy >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Safe glide at total engine failure with ELA-inside

On January 15, 2009, Chesley B. Sullenberger was celebrated world-wide: after the two engines had failed due to bird strike, he and his flight crew succeeded after a glide flight with an Airbus A320 in ditching on the Hudson River. All 155 people on board were saved.

On January 15, 2009, Chesley B. Sullenberger was celebrated world-wide: after the two engines had failed due to bird strike, he and his flight crew succeeded...

Im Focus: Breakthrough with a chain of gold atoms

In the field of nanoscience, an international team of physicists with participants from Konstanz has achieved a breakthrough in understanding heat transport

In the field of nanoscience, an international team of physicists with participants from Konstanz has achieved a breakthrough in understanding heat transport

Im Focus: DNA repair: a new letter in the cell alphabet

Results reveal how discoveries may be hidden in scientific “blind spots”

Cells need to repair damaged DNA in our genes to prevent the development of cancer and other diseases. Our cells therefore activate and send “repair-proteins”...

Im Focus: Dresdner scientists print tomorrow’s world

The Fraunhofer IWS Dresden and Technische Universität Dresden inaugurated their jointly operated Center for Additive Manufacturing Dresden (AMCD) with a festive ceremony on February 7, 2017. Scientists from various disciplines perform research on materials, additive manufacturing processes and innovative technologies, which build up components in a layer by layer process. This technology opens up new horizons for component design and combinations of functions. For example during fabrication, electrical conductors and sensors are already able to be additively manufactured into components. They provide information about stress conditions of a product during operation.

The 3D-printing technology, or additive manufacturing as it is often called, has long made the step out of scientific research laboratories into industrial...

Im Focus: Mimicking nature's cellular architectures via 3-D printing

Research offers new level of control over the structure of 3-D printed materials

Nature does amazing things with limited design materials. Grass, for example, can support its own weight, resist strong wind loads, and recover after being...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Booth and panel discussion – The Lindau Nobel Laureate Meetings at the AAAS 2017 Annual Meeting

13.02.2017 | Event News

Complex Loading versus Hidden Reserves

10.02.2017 | Event News

International Conference on Crystal Growth in Freiburg

09.02.2017 | Event News

 
Latest News

New pop-up strategy inspired by cuts, not folds

27.02.2017 | Materials Sciences

Sandia uses confined nanoparticles to improve hydrogen storage materials performance

27.02.2017 | Interdisciplinary Research

Decoding the genome's cryptic language

27.02.2017 | Life Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>