Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Better displays ahead

11.08.2010
Sleek design and ease of use are just two of the main reasons consumers are increasingly attracted to tablets and e-readers. And these devices are only going to get better -- display technology improvements are on the way.

Several e-reader products on the market today use electrophoretic displays, in which each pixel consists of microscopic capsules that contain black and white particles moving in opposite directions under the influence of an electric field. A serious drawback to this technology is that the screen image is closer to black-on-gray than black-on-white. Also, the slow switching speed (~1 second) due to the limited velocity of the particles prevents integration of other highly desirable features such as touch commands, animation, and video.

Researchers at the University of Cincinnati Nanoelectronics Laboratory are actively pursuing an alternative approach for low-power displays. Their assessment of the future of display technologies appears in the American Institute of Physics' Applied Physics Letters.

"Our approach is based on the concept of vertically stacking electrowetting devices," explains professor Andrew J. Steckl, director of the NanoLab at UC's Department of Electrical and Computer Engineering. "The electric field controls the 'wetting' properties on a fluoropolymer surface, which results in rapid manipulation of liquid on a micrometer scale. Electrowetting displays can operate in both reflective and transmissive modes, broadening their range of display applications. And now, improvements of the hydrophobic insulator material and the working liquids enable EW operation at fairly low driving voltages (~15V)."

Steckl and Dr. Han You, a research associate in the NanoLab, have demonstrated that the vertical stack electrowetting structure can produce multi-color e-paper devices, with the potential for higher resolution than the conventional side-by-side pixel approach. Furthermore, their device has switching speeds that enable video content displays.

What does all of this mean for the consumer? Essentially, tablets and e-readers are about to become capable of even more and look even better doing it. Compared to other technologies, electrowetting reflective display screens boast many advantages. The electrowetting displays are very thin, have a switching speed capable of video display, a wide viewing angle and, just as important, Steckl says, they aren't power hogs.

The article, "Three-Color Electrowetting Display Device for Electronic Paper" by Han You and Andrew J. Steckl will appear in the journal Applied Physics Letters. http://apl.aip.org/applab/v97/i2/p023514_s1

Journalists may request a free PDF of this article by contacting jbardi@aip.org

NOTE: An image is available for journalists. Please contact jbardi@aip.org

Image Caption: A prototype of the vertical stack multi-color electrowetting display device is shown in the photograph. Arrays of ~1,000-2,000 pixels were constructed with pixel sizes of 200 × 600 and 300 × 900 µm.

ABOUT APPLIED PHYSICS LETTERS

Applied Physics Letters, published by the American Institute of Physics, features concise, up-to-date reports on significant new findings in applied physics. Emphasizing rapid dissemination of key data and new physical insights, Applied Physics Letters offers prompt publication of new experimental and theoretical papers bearing on applications of physics phenomena to all branches of science, engineering, and modern technology. Content is published online daily, collected into weekly online and printed issues (52 issues per year). See: http://apl.aip.org/

ABOUT AIP

The American Institute of Physics is a federation of 10 physical science societies representing more than 135,000 scientists, engineers, and educators and is one of the world's largest publishers of scientific information in the physical sciences. Offering partnership solutions for scientific societies and for similar organizations in science and engineering, AIP is a leader in the field of electronic publishing of scholarly journals. AIP publishes 12 journals (some of which are the most highly cited in their respective fields), two magazines, including its flagship publication Physics Today; and the AIP Conference Proceedings series. Its online publishing platform Scitation hosts nearly two million articles from more than 185 scholarly journals and other publications of 28 learned society publishers.

Jason Bardi | EurekAlert!
Further information:
http://www.aip.org

More articles from Physics and Astronomy:

nachricht New NASA study improves search for habitable worlds
20.10.2017 | NASA/Goddard Space Flight Center

nachricht Physics boosts artificial intelligence methods
19.10.2017 | California Institute of Technology

All articles from Physics and Astronomy >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Neutron star merger directly observed for the first time

University of Maryland researchers contribute to historic detection of gravitational waves and light created by event

On August 17, 2017, at 12:41:04 UTC, scientists made the first direct observation of a merger between two neutron stars--the dense, collapsed cores that remain...

Im Focus: Breaking: the first light from two neutron stars merging

Seven new papers describe the first-ever detection of light from a gravitational wave source. The event, caused by two neutron stars colliding and merging together, was dubbed GW170817 because it sent ripples through space-time that reached Earth on 2017 August 17. Around the world, hundreds of excited astronomers mobilized quickly and were able to observe the event using numerous telescopes, providing a wealth of new data.

Previous detections of gravitational waves have all involved the merger of two black holes, a feat that won the 2017 Nobel Prize in Physics earlier this month....

Im Focus: Smart sensors for efficient processes

Material defects in end products can quickly result in failures in many areas of industry, and have a massive impact on the safe use of their products. This is why, in the field of quality assurance, intelligent, nondestructive sensor systems play a key role. They allow testing components and parts in a rapid and cost-efficient manner without destroying the actual product or changing its surface. Experts from the Fraunhofer IZFP in Saarbrücken will be presenting two exhibits at the Blechexpo in Stuttgart from 7–10 November 2017 that allow fast, reliable, and automated characterization of materials and detection of defects (Hall 5, Booth 5306).

When quality testing uses time-consuming destructive test methods, it can result in enormous costs due to damaging or destroying the products. And given that...

Im Focus: Cold molecules on collision course

Using a new cooling technique MPQ scientists succeed at observing collisions in a dense beam of cold and slow dipolar molecules.

How do chemical reactions proceed at extremely low temperatures? The answer requires the investigation of molecular samples that are cold, dense, and slow at...

Im Focus: Shrinking the proton again!

Scientists from the Max Planck Institute of Quantum Optics, using high precision laser spectroscopy of atomic hydrogen, confirm the surprisingly small value of the proton radius determined from muonic hydrogen.

It was one of the breakthroughs of the year 2010: Laser spectroscopy of muonic hydrogen resulted in a value for the proton charge radius that was significantly...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

ASEAN Member States discuss the future role of renewable energy

17.10.2017 | Event News

World Health Summit 2017: International experts set the course for the future of Global Health

10.10.2017 | Event News

Climate Engineering Conference 2017 Opens in Berlin

10.10.2017 | Event News

 
Latest News

Terahertz spectroscopy goes nano

20.10.2017 | Information Technology

Strange but true: Turning a material upside down can sometimes make it softer

20.10.2017 | Materials Sciences

NRL clarifies valley polarization for electronic and optoelectronic technologies

20.10.2017 | Interdisciplinary Research

VideoLinks
B2B-VideoLinks
More VideoLinks >>>