Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Discovery of subatomic particles could answer deep questions in geology

22.06.2010
An international team including scientists from Princeton University has detected subatomic particles deep within the Earth's interior. The discovery could help geologists understand how reactions taking place in the planet's interior affect events on the surface such as earthquakes and volcanoes. Someday, scientists may know enough about the sources and flow of heat in the Earth to predict events like the recent volcanic eruption in Iceland.

The finding, made by the Borexino Collaboration at the Gran Sasso National Laboratory of the Italian Institute of Nuclear Physics, was reported in a paper published in the April issue of Physics Letters B. The work builds on earlier evidence of so-called "geoneutrinos" obtained during a Japanese experiment in 2005.

"This is an important result," said Frank Calaprice, a professor of physics at Princeton and one of the study's authors. "It shows that geoneutrinos have been detected and firmly establishes a new tool to study the interior of the Earth."

Neutrinos, which are chargeless, inert, fundamental particles, are emitted by the sun and cosmic rays entering the Earth's atmosphere. Geoneutrinos are antineutrinos -- neutrinos' antimatter counterparts. Geoneutrinos originate from the radioactive decay of uranium, thorium and potassium in the Earth's crust and mantle -- the thick layer extending to 1,800 miles below the surface.

At laboratories like Gran Sasso, researchers are using instruments that act as geoneutrino "telescopes," looking into the Earth's interior by detecting these curious particles.

Scientists expect that geoneutrinos will aid them in better identifying what constitutes matter deep within the Earth. "It's a very significant discovery and holds much promise for better understanding the composition of the Earth and how the Earth operates," said Thomas Duffy, a professor of geosciences at Princeton, who was not involved in the research.

Earth scientists would like to know more about the crucial role that decaying elements such as uranium and thorium play in heating up the Earth and causing convection in its mantle -- the slow, steady flow of hot rock in the interior carrying heat from great depths to the Earth's surface. Convection, in turn, drives plate tectonics and all the accompanying dynamics of geology seen from the surface -- continents moving, seafloor spreading, volcanoes erupting and earthquakes occurring. No one knows whether radioactive decay dominates the heating action or is just a player among many factors.

The origin of the power produced within the Earth is one of the fundamental questions of geology, according to Calaprice. The definite detection of geoneutrinos by the Borexino experiment confirms that radioactivity contributes a significant fraction -- possibly most -- of the power, he said.

The Borexino experiment actually was designed to detect low-energy solar neutrinos, not geoneutrinos. "As we were building the experiment, we realized we had the capability of detecting particles that were coming at us from the radioactivity deep inside the Earth," said Cristiano Galbiati, an assistant professor of physics and another of the 13 Princeton collaborators among the 88 scientists involved in the research.

The Borexino project is located nearly a mile below the surface of the Gran Sasso mountain about 60 miles outside of Rome -- an ideal spot for studying neutrinos because the rock shields the detector from other types of radiation and particles that would overwhelm the sensing device. Much of the Borexino experiment is a process of eliminating the "noise" of background radiation.

Neutrinos are notoriously difficult to detect because they usually pass straight through matter, rarely interacting with it. The detector is composed of a nylon sphere containing 1,000 tons of a hydrocarbon liquid. An array of ultrasensitive photodetectors is aimed at the sphere that is encased within a stainless steel sphere. All of this is surrounded by 2,400 tons of highly purified water held within another steel sphere measuring 59 feet.

Solar neutrinos produce one type of signal when they come into contact with the detector, and geoneutrinos produce another type. Because there are a thousand times fewer geoneutrinos striking the detector, there are only a few events that occur per year. The paper describes two years of results, running up to December 2009. The experiment is continuing.

The importance of geoneutrinos was pointed out by scientists in the 1960s, and a seminal study by Lawrence Krauss, Sheldon Glashow and David Schramm in 1994 laid the foundation for the field. In 2005, a Japan-U.S. collaboration called KamLAND operating an experiment at a mine in Japan reported an excess of low-energy "antineutrinos."

Scientists can envision a day when a series of geoneutrino-detecting facilities, located at strategic spots around the globe, can sense particles to get a detailed understanding of the Earth's interior and the source of its internal heat. This data could provide enough information to predict the occurrence of events such as volcano eruptions and earthquakes.

Kitta MacPherson | EurekAlert!
Further information:
http://www.princeton.edu

More articles from Physics and Astronomy:

nachricht APEX takes a glimpse into the heart of darkness
25.05.2018 | Max-Planck-Institut für Radioastronomie

nachricht First chip-scale broadband optical system that can sense molecules in the mid-IR
24.05.2018 | Columbia University School of Engineering and Applied Science

All articles from Physics and Astronomy >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Powerful IT security for the car of the future – research alliance develops new approaches

The more electronics steer, accelerate and brake cars, the more important it is to protect them against cyber-attacks. That is why 15 partners from industry and academia will work together over the next three years on new approaches to IT security in self-driving cars. The joint project goes by the name Security For Connected, Autonomous Cars (SecForCARs) and has funding of €7.2 million from the German Federal Ministry of Education and Research. Infineon is leading the project.

Vehicles already offer diverse communication interfaces and more and more automated functions, such as distance and lane-keeping assist systems. At the same...

Im Focus: Molecular switch will facilitate the development of pioneering electro-optical devices

A research team led by physicists at the Technical University of Munich (TUM) has developed molecular nanoswitches that can be toggled between two structurally different states using an applied voltage. They can serve as the basis for a pioneering class of devices that could replace silicon-based components with organic molecules.

The development of new electronic technologies drives the incessant reduction of functional component sizes. In the context of an international collaborative...

Im Focus: LZH showcases laser material processing of tomorrow at the LASYS 2018

At the LASYS 2018, from June 5th to 7th, the Laser Zentrum Hannover e.V. (LZH) will be showcasing processes for the laser material processing of tomorrow in hall 4 at stand 4E75. With blown bomb shells the LZH will present first results of a research project on civil security.

At this year's LASYS, the LZH will exhibit light-based processes such as cutting, welding, ablation and structuring as well as additive manufacturing for...

Im Focus: Self-illuminating pixels for a new display generation

There are videos on the internet that can make one marvel at technology. For example, a smartphone is casually bent around the arm or a thin-film display is rolled in all directions and with almost every diameter. From the user's point of view, this looks fantastic. From a professional point of view, however, the question arises: Is that already possible?

At Display Week 2018, scientists from the Fraunhofer Institute for Applied Polymer Research IAP will be demonstrating today’s technological possibilities and...

Im Focus: Explanation for puzzling quantum oscillations has been found

So-called quantum many-body scars allow quantum systems to stay out of equilibrium much longer, explaining experiment | Study published in Nature Physics

Recently, researchers from Harvard and MIT succeeded in trapping a record 53 atoms and individually controlling their quantum state, realizing what is called a...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

In focus: Climate adapted plants

25.05.2018 | Event News

Save the date: Forum European Neuroscience – 07-11 July 2018 in Berlin, Germany

02.05.2018 | Event News

Invitation to the upcoming "Current Topics in Bioinformatics: Big Data in Genomics and Medicine"

13.04.2018 | Event News

 
Latest News

In focus: Climate adapted plants

25.05.2018 | Event News

Flow probes from the 3D printer

25.05.2018 | Machine Engineering

Less is more? Gene switch for healthy aging found

25.05.2018 | Life Sciences

VideoLinks
Science & Research
Overview of more VideoLinks >>>