Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Direct electronic readout of 'artificial atoms'

28.02.2011
Bochum physicists are constructing 0-dimensional systems

Through his participation, the research team from Bochum, Duisburg-Essen, and Hamburg now has succeeded in an energy-state occupancy readout of those artificial atoms – using common interfaces to classic computers. This is a big step towards the application of such systems. They report about their findings in Nature Communications.

One million instead of individual atoms

In principle, the spin of electrons in individual atoms can be read-out, but the minuteness of the signals and the difficulty of localising individual atoms limit this technology to highly specialised laboratories. It requires an ultra-high vacuum and costly laser technology. 'It would be considerably more elegant to incorporate atom-like systems into solids,' said Prof. Wieck. In this case, quantum mechanics are helpful: For standard electron densities in semiconductors, the wavelength of electrons (and holes) is several tens of nanometres (nm), which means a distance of 100 atoms. It therefore is not necessary to isolate or insert individual atoms. It suffices to define areas that expand in each direction by about 100 atoms, thus comprising around 1003 = one million atoms. 'But even that is not all that simple, because today's high-level integration controls a resolution that reaches only down to around 50nm,' explained Prof. Wieck.

Trick: Stacking oranges on mandarins

Here is a little useful trick that relates to the inter-atomic distance in the crystal lattice: Electrons prefer residing in indium arsenide (InAs) than in gallium arsenide (GaAs). Since indium is a considerably larger atom than gallium, one can sonsider the compressive stress of an InAs layer on GaAs in the same way as when stacking oranges on top of mandarins. The first layer or oranges (InAs) is arranged so that the oranges on top of the mandarins (GaAs) are 'squeezed', which results in a 'strained' layer. The second orange (InAs) layer must be strained as well, but if several of such layers are placed on top of one another, the orange system 'forgets' its underlying mandarin layer order. The strain 'relaxes', which means it causes defects and gaps and piles up the oranges into individual heaps. Such InAs heaps – InAs quantum dots or 'QD' (derived from the English term 'Quantum Dots') – therefore grow in a self-organised way. They are several 10nm wide and around 5nm high, and therefore are ideally suited for the quantum mechanical charge carrier inclusion. It is just large enough to fit into a wavelength of electrons and/or electron holes. The QDs force the electrons into quantified energies by means of which they can be used as 'artificial atoms' for information processing purposes.

10 million times smaller than a hamburger

For several years now, the Bochum researchers have been producing the most homogenous QD 'ensembles': All produced QDs practically have the same size and, because of their flat bottom, resemble a 'hamburger' top, but are around 10 million times smaller. 'We place a few electrons into each QD of an QD ensemble comprising one million QDs, in which we start with the lightest, namely hydrogen, helium and lithium,' explained Prof. Wieck. So far, the energy levels containing these electrons have been read out only by means of optical methods. 'This may be very elegant, but requires an extensive measuring operation with specialised lasers, detectors and spectrometers', explained Wieck. During the actual work, the researchers adopted quite a different approach: They prepared the QDs on (close to) a conducting layer of electrons and only measured the electric resistance of this layer, which changes with the QD's electron occupation. 'Consequently, this gives us direct electronic access to the occupied states in the QDs and these are capable of being read with the common interfaces of classic computers.'

Title listing

B. Marquardt, M. Geller, B. Baxevanis, D. Pfannkuche, A. D. Wieck, D. Reuter, and A. Lorke: Transport spectroscopy of non-equilibrium many-particle spin states in self-assembled quantum dots. In: Nature Communications, 22.2.2011, doi: 10.1038/ncomms1205

Dr. Andreas Wieck | EurekAlert!
Further information:
http://www.rub.de

More articles from Physics and Astronomy:

nachricht Measured for the first time: Direction of light waves changed by quantum effect
24.05.2017 | Vienna University of Technology

nachricht Physicists discover mechanism behind granular capillary effect
24.05.2017 | University of Cologne

All articles from Physics and Astronomy >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: A quantum walk of photons

Physicists from the University of Würzburg are capable of generating identical looking single light particles at the push of a button. Two new studies now demonstrate the potential this method holds.

The quantum computer has fuelled the imagination of scientists for decades: It is based on fundamentally different phenomena than a conventional computer....

Im Focus: Turmoil in sluggish electrons’ existence

An international team of physicists has monitored the scattering behaviour of electrons in a non-conducting material in real-time. Their insights could be beneficial for radiotherapy.

We can refer to electrons in non-conducting materials as ‘sluggish’. Typically, they remain fixed in a location, deep inside an atomic composite. It is hence...

Im Focus: Wafer-thin Magnetic Materials Developed for Future Quantum Technologies

Two-dimensional magnetic structures are regarded as a promising material for new types of data storage, since the magnetic properties of individual molecular building blocks can be investigated and modified. For the first time, researchers have now produced a wafer-thin ferrimagnet, in which molecules with different magnetic centers arrange themselves on a gold surface to form a checkerboard pattern. Scientists at the Swiss Nanoscience Institute at the University of Basel and the Paul Scherrer Institute published their findings in the journal Nature Communications.

Ferrimagnets are composed of two centers which are magnetized at different strengths and point in opposing directions. Two-dimensional, quasi-flat ferrimagnets...

Im Focus: World's thinnest hologram paves path to new 3-D world

Nano-hologram paves way for integration of 3-D holography into everyday electronics

An Australian-Chinese research team has created the world's thinnest hologram, paving the way towards the integration of 3D holography into everyday...

Im Focus: Using graphene to create quantum bits

In the race to produce a quantum computer, a number of projects are seeking a way to create quantum bits -- or qubits -- that are stable, meaning they are not much affected by changes in their environment. This normally needs highly nonlinear non-dissipative elements capable of functioning at very low temperatures.

In pursuit of this goal, researchers at EPFL's Laboratory of Photonics and Quantum Measurements LPQM (STI/SB), have investigated a nonlinear graphene-based...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Marine Conservation: IASS Contributes to UN Ocean Conference in New York on 5-9 June

24.05.2017 | Event News

AWK Aachen Machine Tool Colloquium 2017: Internet of Production for Agile Enterprises

23.05.2017 | Event News

Dortmund MST Conference presents Individualized Healthcare Solutions with micro and nanotechnology

22.05.2017 | Event News

 
Latest News

Physicists discover mechanism behind granular capillary effect

24.05.2017 | Physics and Astronomy

Measured for the first time: Direction of light waves changed by quantum effect

24.05.2017 | Physics and Astronomy

Marine Conservation: IASS Contributes to UN Ocean Conference in New York on 5-9 June

24.05.2017 | Event News

VideoLinks
B2B-VideoLinks
More VideoLinks >>>