Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

First Direct Detection Sheds Light on Dark Galaxies

01.11.2012
Most people think of galaxies as huge islands of stars, gas and dust that populate the universe in visual splendor. Theory, however, has predicted there are other types of galaxies that are devoid of stars and made predominately of dense gas. These “dark” galaxies would be unseen against the black backdrop of the universe.
Now, an international team of astronomers has detected several dark galaxies by observing the fluorescent glow of their hydrogen gas, illuminated by the ultraviolet light of a nearby quasar. But what exactly are dark galaxies, and what role do they play in the evolution of our universe?

“Dark galaxies are composed of dark matter and gas, but for some reason they have not been able to form stars,” said Martin Haehnelt, Kavli Institute for Cosmology at the University of Cambridge. “Some theoretical models have predicted that dark galaxies were common in the early universe when galaxies had more difficulty forming stars – partly because their density of gas was not sufficient to form stars – and only later did galaxies begin to ignite stars, becoming like the galaxies we see today.”

Haehnelt is a member of the scientific team that detected these galaxies. According to Haehnelt, one can begin to understand the importance of dark galaxies by looking at our own Milky Way. “We expect the precursor to the Milky Way was a smaller bright galaxy that merged with dark galaxies nearby. They all came together to form our Milky Way that we see today.”

Another member of the team, Sebastiano Cantalupo of the University of California, Santa Cruz, agreed that dark galaxies are the building blocks of modern galaxies. “In our current theory of galaxy formation, we believe that big galaxies form from the merger of smaller galaxies. Dark galaxies bring to big galaxies a lot of gas, which then accelerates star formation in the bigger galaxies.”

The techniques used for detecting dark galaxies also may provide a new way to learn about other phenomena in the universe, including what some call the “cosmic web” – unseen filaments of gas and dark matter believed to permeate the universe, feeding and building galaxies and galaxy clusters where the filaments intersect.

“I wonder if we can indeed use this technique to see the emission of filamentary gas in the cosmic web, and if so, how close are we to seeing that?” said team member Simon Lilly of the Swiss Federal Institute of Technology in Zurich, Switzerland. “That has been something of a Holy Grail for many, many years and I think this most recent discovery of dark galaxies is a significant step toward the goal.”

The complete discussion with Drs. Haehnelt, Cantalupo and Lilly can be found at: http://www.kavlifoundation.org/science-spotlights/kicc-dark-galaxies.

James Cohen | Newswise Science News
Further information:
http://www.kavlifoundation.org
http://www.kavlifoundation.org/science-spotlights/kicc-dark-galaxies

Further reports about: Dark Quencher Detection LIGHT Milky Way building block dark matter galaxies galaxy cluster

More articles from Physics and Astronomy:

nachricht Climate cycles may explain how running water carved Mars' surface features
02.12.2016 | Penn State

nachricht What do Netflix, Google and planetary systems have in common?
02.12.2016 | University of Toronto

All articles from Physics and Astronomy >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Novel silicon etching technique crafts 3-D gradient refractive index micro-optics

A multi-institutional research collaboration has created a novel approach for fabricating three-dimensional micro-optics through the shape-defined formation of porous silicon (PSi), with broad impacts in integrated optoelectronics, imaging, and photovoltaics.

Working with colleagues at Stanford and The Dow Chemical Company, researchers at the University of Illinois at Urbana-Champaign fabricated 3-D birefringent...

Im Focus: Quantum Particles Form Droplets

In experiments with magnetic atoms conducted at extremely low temperatures, scientists have demonstrated a unique phase of matter: The atoms form a new type of quantum liquid or quantum droplet state. These so called quantum droplets may preserve their form in absence of external confinement because of quantum effects. The joint team of experimental physicists from Innsbruck and theoretical physicists from Hannover report on their findings in the journal Physical Review X.

“Our Quantum droplets are in the gas phase but they still drop like a rock,” explains experimental physicist Francesca Ferlaino when talking about the...

Im Focus: MADMAX: Max Planck Institute for Physics takes up axion research

The Max Planck Institute for Physics (MPP) is opening up a new research field. A workshop from November 21 - 22, 2016 will mark the start of activities for an innovative axion experiment. Axions are still only purely hypothetical particles. Their detection could solve two fundamental problems in particle physics: What dark matter consists of and why it has not yet been possible to directly observe a CP violation for the strong interaction.

The “MADMAX” project is the MPP’s commitment to axion research. Axions are so far only a theoretical prediction and are difficult to detect: on the one hand,...

Im Focus: Molecules change shape when wet

Broadband rotational spectroscopy unravels structural reshaping of isolated molecules in the gas phase to accommodate water

In two recent publications in the Journal of Chemical Physics and in the Journal of Physical Chemistry Letters, researchers around Melanie Schnell from the Max...

Im Focus: Fraunhofer ISE Develops Highly Compact, High Frequency DC/DC Converter for Aviation

The efficiency of power electronic systems is not solely dependent on electrical efficiency but also on weight, for example, in mobile systems. When the weight of relevant components and devices in airplanes, for instance, is reduced, fuel savings can be achieved and correspondingly greenhouse gas emissions decreased. New materials and components based on gallium nitride (GaN) can help to reduce weight and increase the efficiency. With these new materials, power electronic switches can be operated at higher switching frequency, resulting in higher power density and lower material costs.

Researchers at the Fraunhofer Institute for Solar Energy Systems ISE together with partners have investigated how these materials can be used to make power...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

ICTM Conference 2017: Production technology for turbomachine manufacturing of the future

16.11.2016 | Event News

Innovation Day Laser Technology – Laser Additive Manufacturing

01.11.2016 | Event News

#IC2S2: When Social Science meets Computer Science - GESIS will host the IC2S2 conference 2017

14.10.2016 | Event News

 
Latest News

UTSA study describes new minimally invasive device to treat cancer and other illnesses

02.12.2016 | Medical Engineering

Plasma-zapping process could yield trans fat-free soybean oil product

02.12.2016 | Agricultural and Forestry Science

What do Netflix, Google and planetary systems have in common?

02.12.2016 | Physics and Astronomy

VideoLinks
B2B-VideoLinks
More VideoLinks >>>