Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

First Direct Detection Sheds Light on Dark Galaxies

01.11.2012
Most people think of galaxies as huge islands of stars, gas and dust that populate the universe in visual splendor. Theory, however, has predicted there are other types of galaxies that are devoid of stars and made predominately of dense gas. These “dark” galaxies would be unseen against the black backdrop of the universe.
Now, an international team of astronomers has detected several dark galaxies by observing the fluorescent glow of their hydrogen gas, illuminated by the ultraviolet light of a nearby quasar. But what exactly are dark galaxies, and what role do they play in the evolution of our universe?

“Dark galaxies are composed of dark matter and gas, but for some reason they have not been able to form stars,” said Martin Haehnelt, Kavli Institute for Cosmology at the University of Cambridge. “Some theoretical models have predicted that dark galaxies were common in the early universe when galaxies had more difficulty forming stars – partly because their density of gas was not sufficient to form stars – and only later did galaxies begin to ignite stars, becoming like the galaxies we see today.”

Haehnelt is a member of the scientific team that detected these galaxies. According to Haehnelt, one can begin to understand the importance of dark galaxies by looking at our own Milky Way. “We expect the precursor to the Milky Way was a smaller bright galaxy that merged with dark galaxies nearby. They all came together to form our Milky Way that we see today.”

Another member of the team, Sebastiano Cantalupo of the University of California, Santa Cruz, agreed that dark galaxies are the building blocks of modern galaxies. “In our current theory of galaxy formation, we believe that big galaxies form from the merger of smaller galaxies. Dark galaxies bring to big galaxies a lot of gas, which then accelerates star formation in the bigger galaxies.”

The techniques used for detecting dark galaxies also may provide a new way to learn about other phenomena in the universe, including what some call the “cosmic web” – unseen filaments of gas and dark matter believed to permeate the universe, feeding and building galaxies and galaxy clusters where the filaments intersect.

“I wonder if we can indeed use this technique to see the emission of filamentary gas in the cosmic web, and if so, how close are we to seeing that?” said team member Simon Lilly of the Swiss Federal Institute of Technology in Zurich, Switzerland. “That has been something of a Holy Grail for many, many years and I think this most recent discovery of dark galaxies is a significant step toward the goal.”

The complete discussion with Drs. Haehnelt, Cantalupo and Lilly can be found at: http://www.kavlifoundation.org/science-spotlights/kicc-dark-galaxies.

James Cohen | Newswise Science News
Further information:
http://www.kavlifoundation.org
http://www.kavlifoundation.org/science-spotlights/kicc-dark-galaxies

Further reports about: Dark Quencher Detection LIGHT Milky Way building block dark matter galaxies galaxy cluster

More articles from Physics and Astronomy:

nachricht Graphene and quantum dots put in motion a CMOS-integrated camera that can see the invisible
30.05.2017 | ICFO-The Institute of Photonic Sciences

nachricht New Method of Characterizing Graphene
30.05.2017 | Universität Basel

All articles from Physics and Astronomy >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: New Method of Characterizing Graphene

Scientists have developed a new method of characterizing graphene’s properties without applying disruptive electrical contacts, allowing them to investigate both the resistance and quantum capacitance of graphene and other two-dimensional materials. Researchers from the Swiss Nanoscience Institute and the University of Basel’s Department of Physics reported their findings in the journal Physical Review Applied.

Graphene consists of a single layer of carbon atoms. It is transparent, harder than diamond and stronger than steel, yet flexible, and a significantly better...

Im Focus: Strathclyde-led research develops world's highest gain high-power laser amplifier

The world's highest gain high power laser amplifier - by many orders of magnitude - has been developed in research led at the University of Strathclyde.

The researchers demonstrated the feasibility of using plasma to amplify short laser pulses of picojoule-level energy up to 100 millijoules, which is a 'gain'...

Im Focus: Can the immune system be boosted against Staphylococcus aureus by delivery of messenger RNA?

Staphylococcus aureus is a feared pathogen (MRSA, multi-resistant S. aureus) due to frequent resistances against many antibiotics, especially in hospital infections. Researchers at the Paul-Ehrlich-Institut have identified immunological processes that prevent a successful immune response directed against the pathogenic agent. The delivery of bacterial proteins with RNA adjuvant or messenger RNA (mRNA) into immune cells allows the re-direction of the immune response towards an active defense against S. aureus. This could be of significant importance for the development of an effective vaccine. PLOS Pathogens has published these research results online on 25 May 2017.

Staphylococcus aureus (S. aureus) is a bacterium that colonizes by far more than half of the skin and the mucosa of adults, usually without causing infections....

Im Focus: A quantum walk of photons

Physicists from the University of Würzburg are capable of generating identical looking single light particles at the push of a button. Two new studies now demonstrate the potential this method holds.

The quantum computer has fuelled the imagination of scientists for decades: It is based on fundamentally different phenomena than a conventional computer....

Im Focus: Turmoil in sluggish electrons’ existence

An international team of physicists has monitored the scattering behaviour of electrons in a non-conducting material in real-time. Their insights could be beneficial for radiotherapy.

We can refer to electrons in non-conducting materials as ‘sluggish’. Typically, they remain fixed in a location, deep inside an atomic composite. It is hence...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Marine Conservation: IASS Contributes to UN Ocean Conference in New York on 5-9 June

24.05.2017 | Event News

AWK Aachen Machine Tool Colloquium 2017: Internet of Production for Agile Enterprises

23.05.2017 | Event News

Dortmund MST Conference presents Individualized Healthcare Solutions with micro and nanotechnology

22.05.2017 | Event News

 
Latest News

3D printer inks from the woods

30.05.2017 | Life Sciences

How circadian clocks communicate with each other

30.05.2017 | Life Sciences

Graphene and quantum dots put in motion a CMOS-integrated camera that can see the invisible

30.05.2017 | Physics and Astronomy

VideoLinks
B2B-VideoLinks
More VideoLinks >>>