Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

First Direct Detection Sheds Light on Dark Galaxies

01.11.2012
Most people think of galaxies as huge islands of stars, gas and dust that populate the universe in visual splendor. Theory, however, has predicted there are other types of galaxies that are devoid of stars and made predominately of dense gas. These “dark” galaxies would be unseen against the black backdrop of the universe.
Now, an international team of astronomers has detected several dark galaxies by observing the fluorescent glow of their hydrogen gas, illuminated by the ultraviolet light of a nearby quasar. But what exactly are dark galaxies, and what role do they play in the evolution of our universe?

“Dark galaxies are composed of dark matter and gas, but for some reason they have not been able to form stars,” said Martin Haehnelt, Kavli Institute for Cosmology at the University of Cambridge. “Some theoretical models have predicted that dark galaxies were common in the early universe when galaxies had more difficulty forming stars – partly because their density of gas was not sufficient to form stars – and only later did galaxies begin to ignite stars, becoming like the galaxies we see today.”

Haehnelt is a member of the scientific team that detected these galaxies. According to Haehnelt, one can begin to understand the importance of dark galaxies by looking at our own Milky Way. “We expect the precursor to the Milky Way was a smaller bright galaxy that merged with dark galaxies nearby. They all came together to form our Milky Way that we see today.”

Another member of the team, Sebastiano Cantalupo of the University of California, Santa Cruz, agreed that dark galaxies are the building blocks of modern galaxies. “In our current theory of galaxy formation, we believe that big galaxies form from the merger of smaller galaxies. Dark galaxies bring to big galaxies a lot of gas, which then accelerates star formation in the bigger galaxies.”

The techniques used for detecting dark galaxies also may provide a new way to learn about other phenomena in the universe, including what some call the “cosmic web” – unseen filaments of gas and dark matter believed to permeate the universe, feeding and building galaxies and galaxy clusters where the filaments intersect.

“I wonder if we can indeed use this technique to see the emission of filamentary gas in the cosmic web, and if so, how close are we to seeing that?” said team member Simon Lilly of the Swiss Federal Institute of Technology in Zurich, Switzerland. “That has been something of a Holy Grail for many, many years and I think this most recent discovery of dark galaxies is a significant step toward the goal.”

The complete discussion with Drs. Haehnelt, Cantalupo and Lilly can be found at: http://www.kavlifoundation.org/science-spotlights/kicc-dark-galaxies.

James Cohen | Newswise Science News
Further information:
http://www.kavlifoundation.org
http://www.kavlifoundation.org/science-spotlights/kicc-dark-galaxies

Further reports about: Dark Quencher Detection LIGHT Milky Way building block dark matter galaxies galaxy cluster

More articles from Physics and Astronomy:

nachricht Astronomers find unexpected, dust-obscured star formation in distant galaxy
24.03.2017 | University of Massachusetts at Amherst

nachricht Gravitational wave kicks monster black hole out of galactic core
24.03.2017 | NASA/Goddard Space Flight Center

All articles from Physics and Astronomy >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Giant Magnetic Fields in the Universe

Astronomers from Bonn and Tautenburg in Thuringia (Germany) used the 100-m radio telescope at Effelsberg to observe several galaxy clusters. At the edges of these large accumulations of dark matter, stellar systems (galaxies), hot gas, and charged particles, they found magnetic fields that are exceptionally ordered over distances of many million light years. This makes them the most extended magnetic fields in the universe known so far.

The results will be published on March 22 in the journal „Astronomy & Astrophysics“.

Galaxy clusters are the largest gravitationally bound structures in the universe. With a typical extent of about 10 million light years, i.e. 100 times the...

Im Focus: Tracing down linear ubiquitination

Researchers at the Goethe University Frankfurt, together with partners from the University of Tübingen in Germany and Queen Mary University as well as Francis Crick Institute from London (UK) have developed a novel technology to decipher the secret ubiquitin code.

Ubiquitin is a small protein that can be linked to other cellular proteins, thereby controlling and modulating their functions. The attachment occurs in many...

Im Focus: Perovskite edges can be tuned for optoelectronic performance

Layered 2D material improves efficiency for solar cells and LEDs

In the eternal search for next generation high-efficiency solar cells and LEDs, scientists at Los Alamos National Laboratory and their partners are creating...

Im Focus: Polymer-coated silicon nanosheets as alternative to graphene: A perfect team for nanoelectronics

Silicon nanosheets are thin, two-dimensional layers with exceptional optoelectronic properties very similar to those of graphene. Albeit, the nanosheets are less stable. Now researchers at the Technical University of Munich (TUM) have, for the first time ever, produced a composite material combining silicon nanosheets and a polymer that is both UV-resistant and easy to process. This brings the scientists a significant step closer to industrial applications like flexible displays and photosensors.

Silicon nanosheets are thin, two-dimensional layers with exceptional optoelectronic properties very similar to those of graphene. Albeit, the nanosheets are...

Im Focus: Researchers Imitate Molecular Crowding in Cells

Enzymes behave differently in a test tube compared with the molecular scrum of a living cell. Chemists from the University of Basel have now been able to simulate these confined natural conditions in artificial vesicles for the first time. As reported in the academic journal Small, the results are offering better insight into the development of nanoreactors and artificial organelles.

Enzymes behave differently in a test tube compared with the molecular scrum of a living cell. Chemists from the University of Basel have now been able to...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

International Land Use Symposium ILUS 2017: Call for Abstracts and Registration open

20.03.2017 | Event News

CONNECT 2017: International congress on connective tissue

14.03.2017 | Event News

ICTM Conference: Turbine Construction between Big Data and Additive Manufacturing

07.03.2017 | Event News

 
Latest News

Argon is not the 'dope' for metallic hydrogen

24.03.2017 | Materials Sciences

Astronomers find unexpected, dust-obscured star formation in distant galaxy

24.03.2017 | Physics and Astronomy

Gravitational wave kicks monster black hole out of galactic core

24.03.2017 | Physics and Astronomy

VideoLinks
B2B-VideoLinks
More VideoLinks >>>