Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Davisite and Grossmanite: Born with the Solar System

09.08.2010
When the solar system was born 4.5 billion years ago, davisite and grossmanite were there.

These minerals were two of the first solids to form when an interstellar gas cloud collapsed to form the sun. Found in the Allende meteorite, they now carry the names of Andrew Davis and Lawrence Grossman, professors in geophysical sciences at the University of Chicago, in honor of their pioneering contributions to cosmochemistry.

“I was somewhat shocked to hear about this,” Davis says. “It’s a considerable honor.”

Grossman avidly collected minerals as a child growing up in Toronto, and he still has a collection. “It’s very flattering to have a mineral named after you,” he says. But some are more flattering than others. “I’m really happy that it’s not one of those minerals found in bat guano,” Grossman jokes.

Also honoring Davis and Grossman are asteroids 6947 Andrewdavis and 4565 Grossman. Davis and Grossman are among at least 10 other UChicago professors who have had minerals named after them — a list that includes Nobel laureate Harold Urey and Joseph Iddings and Richard Penrose Jr., two founding members of the University’s former geology department. Such recognition is a tribute to the scientists’ innovative work, and a measure of the University’s influential research on the composition of the Earth and the cosmos.

Pyroxene minerals

The California Institute of Technology’s Chi Ma and George Rossman named davisite in the May-June 2009 issue of American Mineralogist, and then named grossmanite in the same journal’s October 2009 issue. Neither mineral is entirely new to the research community, but Ma and Rossman have determined their crystal structure and chemical composition, which the International Mineralogical Association requires as part of the classification and naming process.

Davisite and grossmanite are pyroxenes, which are found in many kinds of Earth rocks, moon rocks, and meteorites. “Pyroxene is a silicate mineral with a chain structure,” Grossman explains.

Pyroxene’s chemical composition can vary widely because cations—positively charged atoms—of iron, magnesium, titanium, and aluminum, among others, can all substitute within available sites within its crystal structure. “Depending on which cations go in, you have a different pyroxene mineral,” he says.

Grossmanite is a mineral that is closely linked to Grossman’s research. “I was calculating what minerals would condense out of a gas of solar composition,” such as the primordial disc of gas that formed the solar system. His calculations seemed to match the mineralogy found in parts of the 4.5 billion-year-old Allende meteorite, believed to have formed in the earliest years of the solar system.

In the mid-1980s a graduate student working under Grossman’s supervision, John Beckett, PhD’86, verified Grossman’s calculations by synthesizing titanium-rich fassaite in the laboratory. “It was difficult, but he succeeded, and no one’s done it since, by the way,” Grossman says.

It was difficult because that mineral, now called grossmanite, condenses from a gas with large amounts of hydrogen and carbon, but hardly any free oxygen. “You’re in an Earth laboratory. You’ve got oxygen all over the place,” Grossman says. “You’re trying to make a system that’s devoid of oxygen, so it requires extreme conditions.” Beckett’s research showed that titanium-rich fassaite forms in a gas identical to the sun’s chemical composition.

This result was “a startling and important Rosetta stone,” Grossman says. The work confirmed that parts of the Allende meteorite formed from the primordial solar gas. “They’re still the only things we know for sure in meteorites that formed in a gas of solar composition,” he says.

Primitive meteorites

Like grossmanite, davisite is found inside refractory inclusions—parts of meteorites with distinctive mineral properties. “They are objects that you find most commonly in carbonaceous chondrite meteorites, among the most primitive kinds of meteorites,” Davis says. “We used to think that these refractory inclusions actually directly condensed from the solar system. We

think that now they have more complicated histories.

“They may have condensed from the solar system, but since then they’ve been re-melted and cooled off again,” he says.

Davis says having the mineral named after him was a gratifying capstone to years of hard work.

“This is something that everybody in the field dreams about,” he says.

Steve Koppes | Newswise Science News
Further information:
http://www.uchicago.edu/

More articles from Physics and Astronomy:

nachricht Astronomers release most complete ultraviolet-light survey of nearby galaxies
18.05.2018 | NASA/Goddard Space Flight Center

nachricht A quantum entanglement between two physically separated ultra-cold atomic clouds
17.05.2018 | University of the Basque Country

All articles from Physics and Astronomy >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Explanation for puzzling quantum oscillations has been found

So-called quantum many-body scars allow quantum systems to stay out of equilibrium much longer, explaining experiment | Study published in Nature Physics

Recently, researchers from Harvard and MIT succeeded in trapping a record 53 atoms and individually controlling their quantum state, realizing what is called a...

Im Focus: Dozens of binaries from Milky Way's globular clusters could be detectable by LISA

Next-generation gravitational wave detector in space will complement LIGO on Earth

The historic first detection of gravitational waves from colliding black holes far outside our galaxy opened a new window to understanding the universe. A...

Im Focus: Entangled atoms shine in unison

A team led by Austrian experimental physicist Rainer Blatt has succeeded in characterizing the quantum entanglement of two spatially separated atoms by observing their light emission. This fundamental demonstration could lead to the development of highly sensitive optical gradiometers for the precise measurement of the gravitational field or the earth's magnetic field.

The age of quantum technology has long been heralded. Decades of research into the quantum world have led to the development of methods that make it possible...

Im Focus: Computer-Designed Customized Regenerative Heart Valves

Cardiovascular tissue engineering aims to treat heart disease with prostheses that grow and regenerate. Now, researchers from the University of Zurich, the Technical University Eindhoven and the Charité Berlin have successfully implanted regenerative heart valves, designed with the aid of computer simulations, into sheep for the first time.

Producing living tissue or organs based on human cells is one of the main research fields in regenerative medicine. Tissue engineering, which involves growing...

Im Focus: Light-induced superconductivity under high pressure

A team of scientists of the Max Planck Institute for the Structure and Dynamics of Matter (MPSD) at the Center for Free-Electron Laser Science in Hamburg investigated optically-induced superconductivity in the alkali-doped fulleride K3C60under high external pressures. This study allowed, on one hand, to uniquely assess the nature of the transient state as a superconducting phase. In addition, it unveiled the possibility to induce superconductivity in K3C60 at temperatures far above the -170 degrees Celsius hypothesized previously, and rather all the way to room temperature. The paper by Cantaluppi et al has been published in Nature Physics.

Unlike ordinary metals, superconductors have the unique capability of transporting electrical currents without any loss. Nowadays, their technological...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

Save the date: Forum European Neuroscience – 07-11 July 2018 in Berlin, Germany

02.05.2018 | Event News

Invitation to the upcoming "Current Topics in Bioinformatics: Big Data in Genomics and Medicine"

13.04.2018 | Event News

Unique scope of UV LED technologies and applications presented in Berlin: ICULTA-2018

12.04.2018 | Event News

 
Latest News

Supersonic waves may help electronics beat the heat

18.05.2018 | Power and Electrical Engineering

Keeping a Close Eye on Ice Loss

18.05.2018 | Information Technology

CrowdWater: An App for Flood Research

18.05.2018 | Information Technology

VideoLinks
Science & Research
Overview of more VideoLinks >>>