Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Davisite and Grossmanite: Born with the Solar System

09.08.2010
When the solar system was born 4.5 billion years ago, davisite and grossmanite were there.

These minerals were two of the first solids to form when an interstellar gas cloud collapsed to form the sun. Found in the Allende meteorite, they now carry the names of Andrew Davis and Lawrence Grossman, professors in geophysical sciences at the University of Chicago, in honor of their pioneering contributions to cosmochemistry.

“I was somewhat shocked to hear about this,” Davis says. “It’s a considerable honor.”

Grossman avidly collected minerals as a child growing up in Toronto, and he still has a collection. “It’s very flattering to have a mineral named after you,” he says. But some are more flattering than others. “I’m really happy that it’s not one of those minerals found in bat guano,” Grossman jokes.

Also honoring Davis and Grossman are asteroids 6947 Andrewdavis and 4565 Grossman. Davis and Grossman are among at least 10 other UChicago professors who have had minerals named after them — a list that includes Nobel laureate Harold Urey and Joseph Iddings and Richard Penrose Jr., two founding members of the University’s former geology department. Such recognition is a tribute to the scientists’ innovative work, and a measure of the University’s influential research on the composition of the Earth and the cosmos.

Pyroxene minerals

The California Institute of Technology’s Chi Ma and George Rossman named davisite in the May-June 2009 issue of American Mineralogist, and then named grossmanite in the same journal’s October 2009 issue. Neither mineral is entirely new to the research community, but Ma and Rossman have determined their crystal structure and chemical composition, which the International Mineralogical Association requires as part of the classification and naming process.

Davisite and grossmanite are pyroxenes, which are found in many kinds of Earth rocks, moon rocks, and meteorites. “Pyroxene is a silicate mineral with a chain structure,” Grossman explains.

Pyroxene’s chemical composition can vary widely because cations—positively charged atoms—of iron, magnesium, titanium, and aluminum, among others, can all substitute within available sites within its crystal structure. “Depending on which cations go in, you have a different pyroxene mineral,” he says.

Grossmanite is a mineral that is closely linked to Grossman’s research. “I was calculating what minerals would condense out of a gas of solar composition,” such as the primordial disc of gas that formed the solar system. His calculations seemed to match the mineralogy found in parts of the 4.5 billion-year-old Allende meteorite, believed to have formed in the earliest years of the solar system.

In the mid-1980s a graduate student working under Grossman’s supervision, John Beckett, PhD’86, verified Grossman’s calculations by synthesizing titanium-rich fassaite in the laboratory. “It was difficult, but he succeeded, and no one’s done it since, by the way,” Grossman says.

It was difficult because that mineral, now called grossmanite, condenses from a gas with large amounts of hydrogen and carbon, but hardly any free oxygen. “You’re in an Earth laboratory. You’ve got oxygen all over the place,” Grossman says. “You’re trying to make a system that’s devoid of oxygen, so it requires extreme conditions.” Beckett’s research showed that titanium-rich fassaite forms in a gas identical to the sun’s chemical composition.

This result was “a startling and important Rosetta stone,” Grossman says. The work confirmed that parts of the Allende meteorite formed from the primordial solar gas. “They’re still the only things we know for sure in meteorites that formed in a gas of solar composition,” he says.

Primitive meteorites

Like grossmanite, davisite is found inside refractory inclusions—parts of meteorites with distinctive mineral properties. “They are objects that you find most commonly in carbonaceous chondrite meteorites, among the most primitive kinds of meteorites,” Davis says. “We used to think that these refractory inclusions actually directly condensed from the solar system. We

think that now they have more complicated histories.

“They may have condensed from the solar system, but since then they’ve been re-melted and cooled off again,” he says.

Davis says having the mineral named after him was a gratifying capstone to years of hard work.

“This is something that everybody in the field dreams about,” he says.

Steve Koppes | Newswise Science News
Further information:
http://www.uchicago.edu/

More articles from Physics and Astronomy:

nachricht Hubble sees Neptune's mysterious shrinking storm
16.02.2018 | NASA/Goddard Space Flight Center

nachricht Supermassive black hole model predicts characteristic light signals at cusp of collision
15.02.2018 | Rochester Institute of Technology

All articles from Physics and Astronomy >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Demonstration of a single molecule piezoelectric effect

Breakthrough provides a new concept of the design of molecular motors, sensors and electricity generators at nanoscale

Researchers from the Institute of Organic Chemistry and Biochemistry of the CAS (IOCB Prague), Institute of Physics of the CAS (IP CAS) and Palacký University...

Im Focus: Hybrid optics bring color imaging using ultrathin metalenses into focus

For photographers and scientists, lenses are lifesavers. They reflect and refract light, making possible the imaging systems that drive discovery through the microscope and preserve history through cameras.

But today's glass-based lenses are bulky and resist miniaturization. Next-generation technologies, such as ultrathin cameras or tiny microscopes, require...

Im Focus: Stem cell divisions in the adult brain seen for the first time

Scientists from the University of Zurich have succeeded for the first time in tracking individual stem cells and their neuronal progeny over months within the intact adult brain. This study sheds light on how new neurons are produced throughout life.

The generation of new nerve cells was once thought to taper off at the end of embryonic development. However, recent research has shown that the adult brain...

Im Focus: Interference as a new method for cooling quantum devices

Theoretical physicists propose to use negative interference to control heat flow in quantum devices. Study published in Physical Review Letters

Quantum computer parts are sensitive and need to be cooled to very low temperatures. Their tiny size makes them particularly susceptible to a temperature...

Im Focus: Autonomous 3D scanner supports individual manufacturing processes

Let’s say the armrest is broken in your vintage car. As things stand, you would need a lot of luck and persistence to find the right spare part. But in the world of Industrie 4.0 and production with batch sizes of one, you can simply scan the armrest and print it out. This is made possible by the first ever 3D scanner capable of working autonomously and in real time. The autonomous scanning system will be on display at the Hannover Messe Preview on February 6 and at the Hannover Messe proper from April 23 to 27, 2018 (Hall 6, Booth A30).

Part of the charm of vintage cars is that they stopped making them long ago, so it is special when you do see one out on the roads. If something breaks or...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

2nd International Conference on High Temperature Shape Memory Alloys (HTSMAs)

15.02.2018 | Event News

Aachen DC Grid Summit 2018

13.02.2018 | Event News

How Global Climate Policy Can Learn from the Energy Transition

12.02.2018 | Event News

 
Latest News

Fingerprints of quantum entanglement

16.02.2018 | Information Technology

'Living bandages': NUST MISIS scientists develop biocompatible anti-burn nanofibers

16.02.2018 | Health and Medicine

Hubble sees Neptune's mysterious shrinking storm

16.02.2018 | Physics and Astronomy

VideoLinks
Science & Research
Overview of more VideoLinks >>>