Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Seeing in the dark

30.10.2013
Thermal infrared (IR) energy is emitted from all things that have a temperature greater than absolute zero.

Human eyes, primarily sensitive to shorter wavelength visible light, are unable to detect or differentiate between the longer-wavelength thermal IR "signatures" given off both by living beings and inanimate objects.


This is a photo of the novel infrared remote sensing system built by researchers at two Chinese universities.

Credit: Tianxu Zhang/Zheng Fang

While mechanical detection of IR radiation has been possible since Samuel Pierpont Langley invented the bolometer in 1880, devices that also can recognize and identify an IR source after detection have been more challenging to develop.

In a recent paper in the journal Review of Scientific Instruments, researchers at two Chinese universities describe a novel instrument that successfully does both tasks with extremely high sensitivity by splitting the IR radiation given off by an object into a long-wave portion for detection and a mid-wave portion that can be spectrally analyzed for accurate identification.

Conventional remote sensing systems share a single sensor for both imaging and spectral data processing. The new instrument designed by the Chinese researchers has separate sensors for each task and uses a dichoric beamsplitter to divide the IR signal from an object into two components, a long-wave IR (LWIR) beam and a mid-wave IR (MWIR) beam.

"The LWIR beam goes to the imaging sensor and the MWIR to the spectrum recognition sensor," said Tianxu Zhang, corresponding author on the RSI paper and a physicist at the Huazhong University of Science and Technology. "This allows us to simultaneously obtain high spatial resolution, frame rate and spectrum resolution, resulting in higher sensitivity for measuring the IR spectrum than currently available combined IR imaging and spectral-analysis devices."

The researchers increased the capability of their instrument by mounting it on a two-dimensional rotating stage. "Once we locate a target of interest, especially a moving one, the stage lets us keep the object in view and sample its IR," Zhang said. "This gives us the ability to define an object's IR spectral curve very precisely and better use the data to distinguish it from another IR radiating source."

In their experiment, the researchers used the dual-based IR remote sensing system to observe the spectral curves of the sun and airplanes in flight from distances up to 6 kilometers (4 miles). "We learned that spectral curves of aerial moving targets are different when measured from different directions," Zhang said. "So, the more data collecting multiple curves for an object, the more distinctive its IR signature."

The researchers say that they plan to use their remote sensing system to build a database of such highly defined signatures. "We want to add the spectra of as many objects as possible to our dataset, thereby increasing the accuracy and reliability with which we can identify objects," Zhang said.

The article, "Dual-band infrared remote sensing system with combined LWIR imaging and MWIR spectral analysis" by Z. Fang, X. Yi, X. Liu, W. Zhang and T. Zhang appears in the journal Review of Scientific Instruments. See: http://dx.doi.org/10.1063/1.4818668

ABOUT THE JOURNAL

The journal Review of Scientific Instruments, which is produced by AIP Publishing, presents innovation in instrumentation and methods across disciplines. See: http://rsi.aip.org/

Jason Socrates Bardi | EurekAlert!
Further information:
http://www.aip.org

More articles from Physics and Astronomy:

nachricht Study offers new theoretical approach to describing non-equilibrium phase transitions
27.04.2017 | DOE/Argonne National Laboratory

nachricht SwRI-led team discovers lull in Mars' giant impact history
26.04.2017 | Southwest Research Institute

All articles from Physics and Astronomy >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Making lightweight construction suitable for series production

More and more automobile companies are focusing on body parts made of carbon fiber reinforced plastics (CFRP). However, manufacturing and repair costs must be further reduced in order to make CFRP more economical in use. Together with the Volkswagen AG and five other partners in the project HolQueSt 3D, the Laser Zentrum Hannover e.V. (LZH) has developed laser processes for the automatic trimming, drilling and repair of three-dimensional components.

Automated manufacturing processes are the basis for ultimately establishing the series production of CFRP components. In the project HolQueSt 3D, the LZH has...

Im Focus: Wonder material? Novel nanotube structure strengthens thin films for flexible electronics

Reflecting the structure of composites found in nature and the ancient world, researchers at the University of Illinois at Urbana-Champaign have synthesized thin carbon nanotube (CNT) textiles that exhibit both high electrical conductivity and a level of toughness that is about fifty times higher than copper films, currently used in electronics.

"The structural robustness of thin metal films has significant importance for the reliable operation of smart skin and flexible electronics including...

Im Focus: Deep inside Galaxy M87

The nearby, giant radio galaxy M87 hosts a supermassive black hole (BH) and is well-known for its bright jet dominating the spectrum over ten orders of magnitude in frequency. Due to its proximity, jet prominence, and the large black hole mass, M87 is the best laboratory for investigating the formation, acceleration, and collimation of relativistic jets. A research team led by Silke Britzen from the Max Planck Institute for Radio Astronomy in Bonn, Germany, has found strong indication for turbulent processes connecting the accretion disk and the jet of that galaxy providing insights into the longstanding problem of the origin of astrophysical jets.

Supermassive black holes form some of the most enigmatic phenomena in astrophysics. Their enormous energy output is supposed to be generated by the...

Im Focus: A Quantum Low Pass for Photons

Physicists in Garching observe novel quantum effect that limits the number of emitted photons.

The probability to find a certain number of photons inside a laser pulse usually corresponds to a classical distribution of independent events, the so-called...

Im Focus: Microprocessors based on a layer of just three atoms

Microprocessors based on atomically thin materials hold the promise of the evolution of traditional processors as well as new applications in the field of flexible electronics. Now, a TU Wien research team led by Thomas Müller has made a breakthrough in this field as part of an ongoing research project.

Two-dimensional materials, or 2D materials for short, are extremely versatile, although – or often more precisely because – they are made up of just one or a...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Fighting drug resistant tuberculosis – InfectoGnostics meets MYCO-NET² partners in Peru

28.04.2017 | Event News

Expert meeting “Health Business Connect” will connect international medical technology companies

20.04.2017 | Event News

Wenn der Computer das Gehirn austrickst

18.04.2017 | Event News

 
Latest News

Wireless power can drive tiny electronic devices in the GI tract

28.04.2017 | Medical Engineering

Ice cave in Transylvania yields window into region's past

28.04.2017 | Earth Sciences

Nose2Brain – Better Therapy for Multiple Sclerosis

28.04.2017 | Life Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>