Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:


Curved carbon for electronics of the future

A new scientific discovery could have profound implications for nanoelectronic components.

Researchers from the Nano-Science Center at the Niels Bohr Institute, University of Copenhagen, in collaboration with Japanese researchers, have shown how electrons on thin tubes of graphite exhibit a unique interaction between their motion and their attached magnetic field – the so-called spin.

The discovery paves the way for unprecedented control over the spin of electrons and may have a big impact on applications for spin-based nanoelectronics. The results have been published in the prestigious journal Nature Physics.

Carbon is a wonderfully versatile element. It is a basic building block in living organisms, one of the most beautiful and hardest materials in the form of diamonds and is found in pencils as graphite. Carbon also has great potential as the foundation for computers of the future as components can be produced from flat, atom thin graphite layers, observed for the first time in the laboratory in 2004 – a discovery which elicited last year's Nobel Prize in Physics.

In addition to a charge all electrons have an attached magnetic field – a so-called spin. One can imagine that all electrons carry around a little bar magnet. The electron's spin has great potential as the basis for future computer chips, but this development has been hindered by the fact that the spin has proved difficult to control and measure.

In flat graphite layers the movement of the electrons do not affect the spin and the small bar magnets point in random directions. As a result, graphite was not an obvious candidate for spin based electronics at first.

New spin in curved carbon

"However, our results show that if the graphite layer is curved into a tube with a diameter of just a few nanometers, the spin of the individual electrons are suddenly strongly influenced by the motion of the electrons. When the electrons on the nanotube are further forced to move in simple circles around the tube the result is that all the spins turn in along the direction of the tube", explain the researchers Thomas Sand Jespersen and Kasper Grove-Rasmussen at the Nano-Science Center at the Niels Bohr Institute.

It has previously been assumed that this phenomenon could only happen in special cases of a single electron on a perfect carbon nanotube, floating freely in a vacuum – a situation that is very difficult to realize in reality. Now the researchers' results show that the alignment takes place in general cases with arbitrary numbers of electrons on carbon tubes with defects and impurities, which will always be present in realistic components.

The interaction between motion and spin was measured by sending a current through a nanotube, where the number of electrons can be individually controlled. The two Danish researchers explain that they have further demonstrated how you can control the strength of the effect or even turn it off entirely by choosing the right number of electrons. This opens up a whole range of new possibilities for the control of and application of the spin.

Unique Properties

In other materials, like gold for example, the motion of the electrons also have a strong influence on the direction of the spin, but as the motion is irregular, one cannot achieve control over the spin of the electrons. Carbon distinguishes itself once again from other materials by possessing entirely unique properties – properties that may be important for future nanoelectronics.

Nature Physics: + 10.1038/NPHYS1880

For more information:

Thomas Sand Jespersen, postdoc, Nanophysics, Niels Bohr Institute, University of Copenhagen, +45 3532-0402, mobile: +45 2857-0164,

Kasper Grove-Rasmussen, postdoc, Nanophysics, Niels Bohr Institute, University of Copenhagen, +45 3532-0402,

Gertie Skaarup | EurekAlert!
Further information:

More articles from Physics and Astronomy:

nachricht Move over, lasers: Scientists can now create holograms from neutrons, too
21.10.2016 | National Institute of Standards and Technology (NIST)

nachricht Finding the lightest superdeformed triaxial atomic nucleus
20.10.2016 | The Henryk Niewodniczanski Institute of Nuclear Physics Polish Academy of Sciences

All articles from Physics and Astronomy >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: New 3-D wiring technique brings scalable quantum computers closer to reality

Researchers from the Institute for Quantum Computing (IQC) at the University of Waterloo led the development of a new extensible wiring technique capable of controlling superconducting quantum bits, representing a significant step towards to the realization of a scalable quantum computer.

"The quantum socket is a wiring method that uses three-dimensional wires based on spring-loaded pins to address individual qubits," said Jeremy Béjanin, a PhD...

Im Focus: Scientists develop a semiconductor nanocomposite material that moves in response to light

In a paper in Scientific Reports, a research team at Worcester Polytechnic Institute describes a novel light-activated phenomenon that could become the basis for applications as diverse as microscopic robotic grippers and more efficient solar cells.

A research team at Worcester Polytechnic Institute (WPI) has developed a revolutionary, light-activated semiconductor nanocomposite material that can be used...

Im Focus: Diamonds aren't forever: Sandia, Harvard team create first quantum computer bridge

By forcefully embedding two silicon atoms in a diamond matrix, Sandia researchers have demonstrated for the first time on a single chip all the components needed to create a quantum bridge to link quantum computers together.

"People have already built small quantum computers," says Sandia researcher Ryan Camacho. "Maybe the first useful one won't be a single giant quantum computer...

Im Focus: New Products - Highlights of COMPAMED 2016

COMPAMED has become the leading international marketplace for suppliers of medical manufacturing. The trade fair, which takes place every November and is co-located to MEDICA in Dusseldorf, has been steadily growing over the past years and shows that medical technology remains a rapidly growing market.

In 2016, the joint pavilion by the IVAM Microtechnology Network, the Product Market “High-tech for Medical Devices”, will be located in Hall 8a again and will...

Im Focus: Ultra-thin ferroelectric material for next-generation electronics

'Ferroelectric' materials can switch between different states of electrical polarization in response to an external electric field. This flexibility means they show promise for many applications, for example in electronic devices and computer memory. Current ferroelectric materials are highly valued for their thermal and chemical stability and rapid electro-mechanical responses, but creating a material that is scalable down to the tiny sizes needed for technologies like silicon-based semiconductors (Si-based CMOS) has proven challenging.

Now, Hiroshi Funakubo and co-workers at the Tokyo Institute of Technology, in collaboration with researchers across Japan, have conducted experiments to...

All Focus news of the innovation-report >>>



Event News

#IC2S2: When Social Science meets Computer Science - GESIS will host the IC2S2 conference 2017

14.10.2016 | Event News

Agricultural Trade Developments and Potentials in Central Asia and the South Caucasus

14.10.2016 | Event News

World Health Summit – Day Three: A Call to Action

12.10.2016 | Event News

Latest News

Resolving the mystery of preeclampsia

21.10.2016 | Health and Medicine

Stanford researchers create new special-purpose computer that may someday save us billions

21.10.2016 | Information Technology

From ancient fossils to future cars

21.10.2016 | Materials Sciences

More VideoLinks >>>