Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Curiosity Shakes, Bakes, and Tastes Mars with SAM

04.12.2012
NASA's Curiosity rover analyzed its first solid sample of Mars in Nov. with a variety of instruments, including the Sample Analysis at Mars (SAM) instrument suite.

Developed at NASA's Goddard Space Flight Center in Greenbelt, Md., SAM is a portable chemistry lab tucked inside the Curiosity rover. SAM examines the chemistry of samples it ingests, checking particularly for chemistry relevant to whether an environment can support or could have supported life.


This artist's concept features NASA's Mars Science Laboratory Curiosity rover, a mobile robot for investigating Mars' past or present ability to sustain microbial life. Credit: NASA/JPL-Caltech

The sample of Martian soil came from the patch of windblown material called "Rocknest," which had provided a sample previously for mineralogical analysis by Curiosity's Chemistry and Mineralogy (CheMin) instrument. CheMin also received a new sample from the same Rocknest scoop that fed SAM. SAM has previously analyzed samples of the Martian atmosphere.

SAM can get a solid sample of Mars from either a drill or a scoop attached to the end of Curiosity's robotic arm. Since Rocknest is essentially a pile of loose soil, the scoop was used this time.

"This is the first time we've analyzed a solid sample using all three instruments that comprise SAM," said Paul Mahaffy, SAM Principal Investigator at NASA Goddard. "We also cleaned Curiosity's sample manipulation system and successfully tested our ability to move the sample from the manipulation system through the instrument suite."

A complex choreography was required to get the sample inside SAM for analysis, according to Mahaffy. First, since the scoop might still have had contamination from Earth, the first three scoops were shaken, run through a sieve, then dumped right back on the surface with the idea that they would carry away any contaminants with them. A sieved portion of the fourth scoop – just a few thousandths of a gram – was then delivered to SAM. A cover that protects SAM from accidentally ingesting windblown material was opened, and Curiosity's arm positioned the sample over SAM's inlet funnels. Before the sample was dropped, SAM turned on its inlet funnel vibrators, which move the sample into a tiny quartz cup. After the sample dropped, the vibrator was turned off, the cover was closed, and the cup, which is on a carousel holding 74 sample cups, was lowered and moved to one of two ovens.

After the sample was baked to release its gases, SAM's three instruments "digested" them and gave Curiosity its first "taste" of Mars. A basic three-step process will be used to analyze future samples as well:

Separate the molecules:
Gas from the sample first travels to the Gas Chromatograph (GC) instrument. The purpose of this instrument is to sort out all the different molecules in the sample, and tell how much of each kind there is. It accomplishes this by using a stream of helium gas to push the sample down a long, narrow tube (which is wound into a coil to save space). Helium is used because it is inert, meaning it won't react with and change any of the sample molecules. The inside of the tube is coated with a thin film. As molecules travel through the tube, they stick for a bit on the film, and the heavier the molecule, the longer it sticks. Thus, the lighter molecules emerge from the tube first, followed by the middleweight molecules, with the heaviest molecules bringing up the rear.

Identify the molecules:

Since molecules of different weights emerge from the tube of the gas chromatograph at different times, the GC can send groups of different weights, one at a time, to SAM's next instrument, which will determine exactly what kind of molecule makes up each of the groups. This is the Quadrupole Mass Spectrometer (QMS) instrument. It fires high-speed electrons at the molecules, breaking them up into fragments and giving the molecules and their fragments an electric charge. These molecules and their fragments with an electric charge can be moved by electric fields. The QMS uses both direct current and alternating current fields to sort the electrically charged molecules and fragments based on their weight (mass). Molecules and fragments of different mass are counted by a detector at different times to generate a mass spectrum, which is a pattern that uniquely identifies molecules.

Identify the volatiles and determine the isotopes:

After the QMS identifies the molecules, the sample is directed into the Tunable Laser Spectrometer (TLS), which can identify and analyze certain volatile molecules, like methane and carbon dioxide. The sample enters a chamber with precisely positioned mirrors at both ends. A laser is fired through a tiny hole in one of the mirrors. As the laser light bounces between the mirrors, it illuminates the sample. Different molecules will absorb certain colors (frequencies) of light, so the TLS identifies the molecules by which colors of the laser are blocked (since the laser is tunable, it can be adjusted to shine in a range of colors).

The TLS can also identify isotopes the same way. Isotopes are versions of an element that are a little bit heavier because their nucleus contains more neutrons. For example, carbon 13 is an atom of carbon with an extra neutron, so it is a heavier version of the more common carbon 12. Occasionally, a carbon 13 will take the place of a carbon 12 in an organic molecule. This is important since life prefers to use the lighter isotopes, because chemical reactions with them require less energy. So if we measure the isotopes of carbon in a material and discover that there is more light carbon relative to heavy carbon than would be found randomly, we might guess that we are seeing the effects of life.

Finally, since volatile molecules are found in the atmosphere as well as in soil and rock, samples of the Martian air can be sent directly to the TLS without going through SAM's other instruments.

SAM was developed at NASA Goddard, but with significant elements provided by industry, university, and NASA partners. NASA's Jet Propulsion Laboratory, a division of the California Institute of Technology, Pasadena, manages the Curiosity/Mars Science Laboratory Project for NASA's Science Mission Directorate, Washington. JPL designed and built the rover.

For more information about SAM, refer to the "SAM I am" site at: http://ssed.gsfc.nasa.gov/sam/samiam.html

For more information about the Curiosity rover, visit: http://www.nasa.gov/msl and http://mars.jpl.nasa.gov/msl Nancy Neal-Jones / Bill Steigerwald
NASA's Goddard Space Flight Center, Greenbelt, Md.
Nancy.N.Jones@nasa.gov / William.A.Steigerwald@nasa.gov
Guy Webster
Jet Propulsion Laboratory, Pasadena, Calif.
Guy.webster@jpl.nasa.gov

Bill Steigerwald | EurekAlert!
Further information:
http://www.nasa.gov
http://www.nasa.gov/mission_pages/msl/news/sam-tastes-mars.html

More articles from Physics and Astronomy:

nachricht New thruster design increases efficiency for future spaceflight
16.08.2017 | American Institute of Physics

nachricht Tracking a solar eruption through the solar system
16.08.2017 | American Geophysical Union

All articles from Physics and Astronomy >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Exotic quantum states made from light: Physicists create optical “wells” for a super-photon

Physicists at the University of Bonn have managed to create optical hollows and more complex patterns into which the light of a Bose-Einstein condensate flows. The creation of such highly low-loss structures for light is a prerequisite for complex light circuits, such as for quantum information processing for a new generation of computers. The researchers are now presenting their results in the journal Nature Photonics.

Light particles (photons) occur as tiny, indivisible portions. Many thousands of these light portions can be merged to form a single super-photon if they are...

Im Focus: Circular RNA linked to brain function

For the first time, scientists have shown that circular RNA is linked to brain function. When a RNA molecule called Cdr1as was deleted from the genome of mice, the animals had problems filtering out unnecessary information – like patients suffering from neuropsychiatric disorders.

While hundreds of circular RNAs (circRNAs) are abundant in mammalian brains, one big question has remained unanswered: What are they actually good for? In the...

Im Focus: RAVAN CubeSat measures Earth's outgoing energy

An experimental small satellite has successfully collected and delivered data on a key measurement for predicting changes in Earth's climate.

The Radiometer Assessment using Vertically Aligned Nanotubes (RAVAN) CubeSat was launched into low-Earth orbit on Nov. 11, 2016, in order to test new...

Im Focus: Scientists shine new light on the “other high temperature superconductor”

A study led by scientists of the Max Planck Institute for the Structure and Dynamics of Matter (MPSD) at the Center for Free-Electron Laser Science in Hamburg presents evidence of the coexistence of superconductivity and “charge-density-waves” in compounds of the poorly-studied family of bismuthates. This observation opens up new perspectives for a deeper understanding of the phenomenon of high-temperature superconductivity, a topic which is at the core of condensed matter research since more than 30 years. The paper by Nicoletti et al has been published in the PNAS.

Since the beginning of the 20th century, superconductivity had been observed in some metals at temperatures only a few degrees above the absolute zero (minus...

Im Focus: Scientists improve forecast of increasing hazard on Ecuadorian volcano

Researchers from the University of Miami (UM) Rosenstiel School of Marine and Atmospheric Science, the Italian Space Agency (ASI), and the Instituto Geofisico--Escuela Politecnica Nacional (IGEPN) of Ecuador, showed an increasing volcanic danger on Cotopaxi in Ecuador using a powerful technique known as Interferometric Synthetic Aperture Radar (InSAR).

The Andes region in which Cotopaxi volcano is located is known to contain some of the world's most serious volcanic hazard. A mid- to large-size eruption has...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Call for Papers – ICNFT 2018, 5th International Conference on New Forming Technology

16.08.2017 | Event News

Sustainability is the business model of tomorrow

04.08.2017 | Event News

Clash of Realities 2017: Registration now open. International Conference at TH Köln

26.07.2017 | Event News

 
Latest News

New thruster design increases efficiency for future spaceflight

16.08.2017 | Physics and Astronomy

Transporting spin: A graphene and boron nitride heterostructure creates large spin signals

16.08.2017 | Materials Sciences

A new method for the 3-D printing of living tissues

16.08.2017 | Interdisciplinary Research

VideoLinks
B2B-VideoLinks
More VideoLinks >>>