Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Curiosity Shakes, Bakes, and Tastes Mars with SAM

04.12.2012
NASA's Curiosity rover analyzed its first solid sample of Mars in Nov. with a variety of instruments, including the Sample Analysis at Mars (SAM) instrument suite.

Developed at NASA's Goddard Space Flight Center in Greenbelt, Md., SAM is a portable chemistry lab tucked inside the Curiosity rover. SAM examines the chemistry of samples it ingests, checking particularly for chemistry relevant to whether an environment can support or could have supported life.


This artist's concept features NASA's Mars Science Laboratory Curiosity rover, a mobile robot for investigating Mars' past or present ability to sustain microbial life. Credit: NASA/JPL-Caltech

The sample of Martian soil came from the patch of windblown material called "Rocknest," which had provided a sample previously for mineralogical analysis by Curiosity's Chemistry and Mineralogy (CheMin) instrument. CheMin also received a new sample from the same Rocknest scoop that fed SAM. SAM has previously analyzed samples of the Martian atmosphere.

SAM can get a solid sample of Mars from either a drill or a scoop attached to the end of Curiosity's robotic arm. Since Rocknest is essentially a pile of loose soil, the scoop was used this time.

"This is the first time we've analyzed a solid sample using all three instruments that comprise SAM," said Paul Mahaffy, SAM Principal Investigator at NASA Goddard. "We also cleaned Curiosity's sample manipulation system and successfully tested our ability to move the sample from the manipulation system through the instrument suite."

A complex choreography was required to get the sample inside SAM for analysis, according to Mahaffy. First, since the scoop might still have had contamination from Earth, the first three scoops were shaken, run through a sieve, then dumped right back on the surface with the idea that they would carry away any contaminants with them. A sieved portion of the fourth scoop – just a few thousandths of a gram – was then delivered to SAM. A cover that protects SAM from accidentally ingesting windblown material was opened, and Curiosity's arm positioned the sample over SAM's inlet funnels. Before the sample was dropped, SAM turned on its inlet funnel vibrators, which move the sample into a tiny quartz cup. After the sample dropped, the vibrator was turned off, the cover was closed, and the cup, which is on a carousel holding 74 sample cups, was lowered and moved to one of two ovens.

After the sample was baked to release its gases, SAM's three instruments "digested" them and gave Curiosity its first "taste" of Mars. A basic three-step process will be used to analyze future samples as well:

Separate the molecules:
Gas from the sample first travels to the Gas Chromatograph (GC) instrument. The purpose of this instrument is to sort out all the different molecules in the sample, and tell how much of each kind there is. It accomplishes this by using a stream of helium gas to push the sample down a long, narrow tube (which is wound into a coil to save space). Helium is used because it is inert, meaning it won't react with and change any of the sample molecules. The inside of the tube is coated with a thin film. As molecules travel through the tube, they stick for a bit on the film, and the heavier the molecule, the longer it sticks. Thus, the lighter molecules emerge from the tube first, followed by the middleweight molecules, with the heaviest molecules bringing up the rear.

Identify the molecules:

Since molecules of different weights emerge from the tube of the gas chromatograph at different times, the GC can send groups of different weights, one at a time, to SAM's next instrument, which will determine exactly what kind of molecule makes up each of the groups. This is the Quadrupole Mass Spectrometer (QMS) instrument. It fires high-speed electrons at the molecules, breaking them up into fragments and giving the molecules and their fragments an electric charge. These molecules and their fragments with an electric charge can be moved by electric fields. The QMS uses both direct current and alternating current fields to sort the electrically charged molecules and fragments based on their weight (mass). Molecules and fragments of different mass are counted by a detector at different times to generate a mass spectrum, which is a pattern that uniquely identifies molecules.

Identify the volatiles and determine the isotopes:

After the QMS identifies the molecules, the sample is directed into the Tunable Laser Spectrometer (TLS), which can identify and analyze certain volatile molecules, like methane and carbon dioxide. The sample enters a chamber with precisely positioned mirrors at both ends. A laser is fired through a tiny hole in one of the mirrors. As the laser light bounces between the mirrors, it illuminates the sample. Different molecules will absorb certain colors (frequencies) of light, so the TLS identifies the molecules by which colors of the laser are blocked (since the laser is tunable, it can be adjusted to shine in a range of colors).

The TLS can also identify isotopes the same way. Isotopes are versions of an element that are a little bit heavier because their nucleus contains more neutrons. For example, carbon 13 is an atom of carbon with an extra neutron, so it is a heavier version of the more common carbon 12. Occasionally, a carbon 13 will take the place of a carbon 12 in an organic molecule. This is important since life prefers to use the lighter isotopes, because chemical reactions with them require less energy. So if we measure the isotopes of carbon in a material and discover that there is more light carbon relative to heavy carbon than would be found randomly, we might guess that we are seeing the effects of life.

Finally, since volatile molecules are found in the atmosphere as well as in soil and rock, samples of the Martian air can be sent directly to the TLS without going through SAM's other instruments.

SAM was developed at NASA Goddard, but with significant elements provided by industry, university, and NASA partners. NASA's Jet Propulsion Laboratory, a division of the California Institute of Technology, Pasadena, manages the Curiosity/Mars Science Laboratory Project for NASA's Science Mission Directorate, Washington. JPL designed and built the rover.

For more information about SAM, refer to the "SAM I am" site at: http://ssed.gsfc.nasa.gov/sam/samiam.html

For more information about the Curiosity rover, visit: http://www.nasa.gov/msl and http://mars.jpl.nasa.gov/msl Nancy Neal-Jones / Bill Steigerwald
NASA's Goddard Space Flight Center, Greenbelt, Md.
Nancy.N.Jones@nasa.gov / William.A.Steigerwald@nasa.gov
Guy Webster
Jet Propulsion Laboratory, Pasadena, Calif.
Guy.webster@jpl.nasa.gov

Bill Steigerwald | EurekAlert!
Further information:
http://www.nasa.gov
http://www.nasa.gov/mission_pages/msl/news/sam-tastes-mars.html

More articles from Physics and Astronomy:

nachricht Hubble sees Neptune's mysterious shrinking storm
16.02.2018 | NASA/Goddard Space Flight Center

nachricht Supermassive black hole model predicts characteristic light signals at cusp of collision
15.02.2018 | Rochester Institute of Technology

All articles from Physics and Astronomy >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Demonstration of a single molecule piezoelectric effect

Breakthrough provides a new concept of the design of molecular motors, sensors and electricity generators at nanoscale

Researchers from the Institute of Organic Chemistry and Biochemistry of the CAS (IOCB Prague), Institute of Physics of the CAS (IP CAS) and Palacký University...

Im Focus: Hybrid optics bring color imaging using ultrathin metalenses into focus

For photographers and scientists, lenses are lifesavers. They reflect and refract light, making possible the imaging systems that drive discovery through the microscope and preserve history through cameras.

But today's glass-based lenses are bulky and resist miniaturization. Next-generation technologies, such as ultrathin cameras or tiny microscopes, require...

Im Focus: Stem cell divisions in the adult brain seen for the first time

Scientists from the University of Zurich have succeeded for the first time in tracking individual stem cells and their neuronal progeny over months within the intact adult brain. This study sheds light on how new neurons are produced throughout life.

The generation of new nerve cells was once thought to taper off at the end of embryonic development. However, recent research has shown that the adult brain...

Im Focus: Interference as a new method for cooling quantum devices

Theoretical physicists propose to use negative interference to control heat flow in quantum devices. Study published in Physical Review Letters

Quantum computer parts are sensitive and need to be cooled to very low temperatures. Their tiny size makes them particularly susceptible to a temperature...

Im Focus: Autonomous 3D scanner supports individual manufacturing processes

Let’s say the armrest is broken in your vintage car. As things stand, you would need a lot of luck and persistence to find the right spare part. But in the world of Industrie 4.0 and production with batch sizes of one, you can simply scan the armrest and print it out. This is made possible by the first ever 3D scanner capable of working autonomously and in real time. The autonomous scanning system will be on display at the Hannover Messe Preview on February 6 and at the Hannover Messe proper from April 23 to 27, 2018 (Hall 6, Booth A30).

Part of the charm of vintage cars is that they stopped making them long ago, so it is special when you do see one out on the roads. If something breaks or...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

2nd International Conference on High Temperature Shape Memory Alloys (HTSMAs)

15.02.2018 | Event News

Aachen DC Grid Summit 2018

13.02.2018 | Event News

How Global Climate Policy Can Learn from the Energy Transition

12.02.2018 | Event News

 
Latest News

Fingerprints of quantum entanglement

16.02.2018 | Information Technology

'Living bandages': NUST MISIS scientists develop biocompatible anti-burn nanofibers

16.02.2018 | Health and Medicine

Hubble sees Neptune's mysterious shrinking storm

16.02.2018 | Physics and Astronomy

VideoLinks
Science & Research
Overview of more VideoLinks >>>