Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

CSIRO telescope spots mega-star cradle

03.05.2010
Using a CSIRO radio telescope, an international team of researchers has caught an enormous cloud of cosmic gas and dust in the process of collapsing in on itself – a discovery which could help solve one of astronomy’s enduring conundrums: ‘How do massive stars form?’

Dr Peter Barnes from the University of Florida says astronomers have a good grasp of how stars such as our Sun form from clouds of gas and dust, but for heavier stars – ten times the mass of the Sun or more – they are still largely in the dark, despite years of work.

“Astronomers are still debating the physical processes that can generate these big stars,” Dr Barnes says.

“Massive stars are rare, making up only a few per cent of all stars, and they will only form in significant numbers when really massive clouds of gas collapse, creating hundreds of stars of different masses. Smaller gas clouds are not likely to make big stars.”

Accordingly, regions in space where massive stars seem to be forming are also rare. Most are well over 1000 light-years away, making them hard to observe.

Using CSIRO’s ‘Mopra’ radio telescope – a 22m dish near Coonabarabran, NSW – the research team discovered a massive cloud of mostly hydrogen gas and dust, three or more light-years across, that is collapsing in on itself and will probably form a huge cluster of stars.

Dr Stuart Ryder of the Anglo-Australian Observatory said the discovery was made during a survey of more than 200 gas clouds.

“With clouds like this we can test theories of massive star cluster formation in great detail.”

The gas cloud, called BYF73, is about 8,000 light years away, in the constellation of Carina (“the keel”) in the Southern sky.

“With clouds like this we can test theories of massive star cluster formation in great detail” Dr Stuart Ryder, Anglo-Australian ObservatoryEvidence for ‘infalling’ gas came from the radio telescope’s detection of two kinds of molecules in the cloud – HCO+ and H13CO+. The spectral lines from the HCO+ molecules in particular showed the gas had a velocity and temperature pattern that indicated collapse.

Mopra Research Scientist at CSIRO Astronomy and Space Science, Dr Kate Brooks, said the Mopra telescope excels at giving a picture of the complex chemistry of cosmic gas clouds.

“Much of its time is used for large projects like this, and almost all Mopra projects are international collaborations.”

The CSIRO telescope observations were confirmed by observations with the Atacama Submillimeter Telescope Experiment (ATSE) telescope in Chile.

The research team calculates that the gas is falling in at the rate of about three per cent of the Sun’s mass every year – one of the highest rates known.

Follow-up infrared observations made with the 3.9-m Anglo-Australian Telescope (also near Coonabarabran, NSW) showed signs of massive young stars that have already formed right at the centre of the gas clump, and new stars forming.

Star-formation in the cloud was also evident in archival data from the Spitzer and MSX spacecraft, which observe in the mid-infrared.

Gas cloud BYF73 was found during a large-scale search for massive star-forming regions – the Census of High- and Medium-mass Protostars, or CHaMP. This is one of the largest, most uniform and least biased surveys to date of massive star-forming regions in our Galaxy.

The research team’s findings have been published in the Monthly Notices of the Royal Astronomical Society, 402, 73-86 (2010).

Dr. Peter Barnes | EurekAlert!
Further information:
http://www.ufl.edu
http://www.csiro.au

More articles from Physics and Astronomy:

nachricht Heating quantum matter: A novel view on topology
22.08.2017 | Université libre de Bruxelles

nachricht Engineering team images tiny quasicrystals as they form
18.08.2017 | Cornell University

All articles from Physics and Astronomy >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Fizzy soda water could be key to clean manufacture of flat wonder material: Graphene

Whether you call it effervescent, fizzy, or sparkling, carbonated water is making a comeback as a beverage. Aside from quenching thirst, researchers at the University of Illinois at Urbana-Champaign have discovered a new use for these "bubbly" concoctions that will have major impact on the manufacturer of the world's thinnest, flattest, and one most useful materials -- graphene.

As graphene's popularity grows as an advanced "wonder" material, the speed and quality at which it can be manufactured will be paramount. With that in mind,...

Im Focus: Exotic quantum states made from light: Physicists create optical “wells” for a super-photon

Physicists at the University of Bonn have managed to create optical hollows and more complex patterns into which the light of a Bose-Einstein condensate flows. The creation of such highly low-loss structures for light is a prerequisite for complex light circuits, such as for quantum information processing for a new generation of computers. The researchers are now presenting their results in the journal Nature Photonics.

Light particles (photons) occur as tiny, indivisible portions. Many thousands of these light portions can be merged to form a single super-photon if they are...

Im Focus: Circular RNA linked to brain function

For the first time, scientists have shown that circular RNA is linked to brain function. When a RNA molecule called Cdr1as was deleted from the genome of mice, the animals had problems filtering out unnecessary information – like patients suffering from neuropsychiatric disorders.

While hundreds of circular RNAs (circRNAs) are abundant in mammalian brains, one big question has remained unanswered: What are they actually good for? In the...

Im Focus: RAVAN CubeSat measures Earth's outgoing energy

An experimental small satellite has successfully collected and delivered data on a key measurement for predicting changes in Earth's climate.

The Radiometer Assessment using Vertically Aligned Nanotubes (RAVAN) CubeSat was launched into low-Earth orbit on Nov. 11, 2016, in order to test new...

Im Focus: Scientists shine new light on the “other high temperature superconductor”

A study led by scientists of the Max Planck Institute for the Structure and Dynamics of Matter (MPSD) at the Center for Free-Electron Laser Science in Hamburg presents evidence of the coexistence of superconductivity and “charge-density-waves” in compounds of the poorly-studied family of bismuthates. This observation opens up new perspectives for a deeper understanding of the phenomenon of high-temperature superconductivity, a topic which is at the core of condensed matter research since more than 30 years. The paper by Nicoletti et al has been published in the PNAS.

Since the beginning of the 20th century, superconductivity had been observed in some metals at temperatures only a few degrees above the absolute zero (minus...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Call for Papers – ICNFT 2018, 5th International Conference on New Forming Technology

16.08.2017 | Event News

Sustainability is the business model of tomorrow

04.08.2017 | Event News

Clash of Realities 2017: Registration now open. International Conference at TH Köln

26.07.2017 | Event News

 
Latest News

Cholesterol-lowering drugs may fight infectious disease

22.08.2017 | Health and Medicine

Meter-sized single-crystal graphene growth becomes possible

22.08.2017 | Materials Sciences

Repairing damaged hearts with self-healing heart cells

22.08.2017 | Life Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>