Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

CSIRO telescope spots mega-star cradle

03.05.2010
Using a CSIRO radio telescope, an international team of researchers has caught an enormous cloud of cosmic gas and dust in the process of collapsing in on itself – a discovery which could help solve one of astronomy’s enduring conundrums: ‘How do massive stars form?’

Dr Peter Barnes from the University of Florida says astronomers have a good grasp of how stars such as our Sun form from clouds of gas and dust, but for heavier stars – ten times the mass of the Sun or more – they are still largely in the dark, despite years of work.

“Astronomers are still debating the physical processes that can generate these big stars,” Dr Barnes says.

“Massive stars are rare, making up only a few per cent of all stars, and they will only form in significant numbers when really massive clouds of gas collapse, creating hundreds of stars of different masses. Smaller gas clouds are not likely to make big stars.”

Accordingly, regions in space where massive stars seem to be forming are also rare. Most are well over 1000 light-years away, making them hard to observe.

Using CSIRO’s ‘Mopra’ radio telescope – a 22m dish near Coonabarabran, NSW – the research team discovered a massive cloud of mostly hydrogen gas and dust, three or more light-years across, that is collapsing in on itself and will probably form a huge cluster of stars.

Dr Stuart Ryder of the Anglo-Australian Observatory said the discovery was made during a survey of more than 200 gas clouds.

“With clouds like this we can test theories of massive star cluster formation in great detail.”

The gas cloud, called BYF73, is about 8,000 light years away, in the constellation of Carina (“the keel”) in the Southern sky.

“With clouds like this we can test theories of massive star cluster formation in great detail” Dr Stuart Ryder, Anglo-Australian ObservatoryEvidence for ‘infalling’ gas came from the radio telescope’s detection of two kinds of molecules in the cloud – HCO+ and H13CO+. The spectral lines from the HCO+ molecules in particular showed the gas had a velocity and temperature pattern that indicated collapse.

Mopra Research Scientist at CSIRO Astronomy and Space Science, Dr Kate Brooks, said the Mopra telescope excels at giving a picture of the complex chemistry of cosmic gas clouds.

“Much of its time is used for large projects like this, and almost all Mopra projects are international collaborations.”

The CSIRO telescope observations were confirmed by observations with the Atacama Submillimeter Telescope Experiment (ATSE) telescope in Chile.

The research team calculates that the gas is falling in at the rate of about three per cent of the Sun’s mass every year – one of the highest rates known.

Follow-up infrared observations made with the 3.9-m Anglo-Australian Telescope (also near Coonabarabran, NSW) showed signs of massive young stars that have already formed right at the centre of the gas clump, and new stars forming.

Star-formation in the cloud was also evident in archival data from the Spitzer and MSX spacecraft, which observe in the mid-infrared.

Gas cloud BYF73 was found during a large-scale search for massive star-forming regions – the Census of High- and Medium-mass Protostars, or CHaMP. This is one of the largest, most uniform and least biased surveys to date of massive star-forming regions in our Galaxy.

The research team’s findings have been published in the Monthly Notices of the Royal Astronomical Society, 402, 73-86 (2010).

Dr. Peter Barnes | EurekAlert!
Further information:
http://www.ufl.edu
http://www.csiro.au

More articles from Physics and Astronomy:

nachricht Applicability of dynamic facilitation theory to binary hard disk systems
08.12.2016 | Nagoya Institute of Technology

nachricht Will Earth still exist 5 billion years from now?
08.12.2016 | KU Leuven

All articles from Physics and Astronomy >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Significantly more productivity in USP lasers

In recent years, lasers with ultrashort pulses (USP) down to the femtosecond range have become established on an industrial scale. They could advance some applications with the much-lauded “cold ablation” – if that meant they would then achieve more throughput. A new generation of process engineering that will address this issue in particular will be discussed at the “4th UKP Workshop – Ultrafast Laser Technology” in April 2017.

Even back in the 1990s, scientists were comparing materials processing with nanosecond, picosecond and femtosesecond pulses. The result was surprising:...

Im Focus: Shape matters when light meets atom

Mapping the interaction of a single atom with a single photon may inform design of quantum devices

Have you ever wondered how you see the world? Vision is about photons of light, which are packets of energy, interacting with the atoms or molecules in what...

Im Focus: Novel silicon etching technique crafts 3-D gradient refractive index micro-optics

A multi-institutional research collaboration has created a novel approach for fabricating three-dimensional micro-optics through the shape-defined formation of porous silicon (PSi), with broad impacts in integrated optoelectronics, imaging, and photovoltaics.

Working with colleagues at Stanford and The Dow Chemical Company, researchers at the University of Illinois at Urbana-Champaign fabricated 3-D birefringent...

Im Focus: Quantum Particles Form Droplets

In experiments with magnetic atoms conducted at extremely low temperatures, scientists have demonstrated a unique phase of matter: The atoms form a new type of quantum liquid or quantum droplet state. These so called quantum droplets may preserve their form in absence of external confinement because of quantum effects. The joint team of experimental physicists from Innsbruck and theoretical physicists from Hannover report on their findings in the journal Physical Review X.

“Our Quantum droplets are in the gas phase but they still drop like a rock,” explains experimental physicist Francesca Ferlaino when talking about the...

Im Focus: MADMAX: Max Planck Institute for Physics takes up axion research

The Max Planck Institute for Physics (MPP) is opening up a new research field. A workshop from November 21 - 22, 2016 will mark the start of activities for an innovative axion experiment. Axions are still only purely hypothetical particles. Their detection could solve two fundamental problems in particle physics: What dark matter consists of and why it has not yet been possible to directly observe a CP violation for the strong interaction.

The “MADMAX” project is the MPP’s commitment to axion research. Axions are so far only a theoretical prediction and are difficult to detect: on the one hand,...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

ICTM Conference 2017: Production technology for turbomachine manufacturing of the future

16.11.2016 | Event News

Innovation Day Laser Technology – Laser Additive Manufacturing

01.11.2016 | Event News

#IC2S2: When Social Science meets Computer Science - GESIS will host the IC2S2 conference 2017

14.10.2016 | Event News

 
Latest News

Closing the carbon loop

08.12.2016 | Life Sciences

Applicability of dynamic facilitation theory to binary hard disk systems

08.12.2016 | Physics and Astronomy

Scientists track chemical and structural evolution of catalytic nanoparticles in 3-D

08.12.2016 | Materials Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>