Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:


Cosmic Dust Belts without Dust

An international research team of astrophysicists of Jena University (Germany) has discovered six ultra-cold debris disks - the coldest debris disks known so far. Moreover, the cold debris disks are lacking the characteristic dust which is always released when the rocks collide. The scientists came across the unusual debris disks with the help of the Herschel Space Observatorium.

Planets and asteroids, red giants and brown dwarfs – there are all kinds of objects in our Universe. Debris disks are among them. These are belts consisting of countless dust particles and planetesimals, circling around one central star.

“At least one fifth of stars are surrounded by dust belts like these,“ Prof. Dr. Alexander Krivov from the Friedrich-Schiller-University Jena explains. “They are the remains of the formation of planets, in which the unused, building materials are collected,“ the astrophysicist points out. Therefore debris disks are an important piece in the puzzle to be able to better understand the variety of planetary systems.

For astronomers like Alexander Krivov debris disks are actually nothing new. Our sun is also orbited by such dust belts: the Asteroid Belt and the Kuiper Belt with Pluto being perhaps the most well-known object in it. However, the Jena astrophysicist, accompanied by an international team of scientists, has observed six stars similar to the sun with extraordinary dust belts:

The newly discovered debris disks are not only bigger than the Kuiper Belt. Above all they are extremely cold. With a temperature of about minus 250 °C they are the coldest debris disks known so far. The scientists report on it in the science journal ‘The Astrophysical Journal‘, which is already online and will be available in a print version from 20 July. “We were surprised that such cold debris disks exist at all,“ Alexander Krivov, the lead author of the new study, says. By way of comparison: The Kuiper Belt is about 70 °C degree warmer, some of the dust disks even reach room temperature.

The six debris disks are mysterious for yet another reason: They are lacking the characteristic dust which is always released when the rocks collide. “Small dust particles are much hotter than the temperatures observed by us,” Krivov says. According to this, the cold debris disks only consist of bigger but at the same time not-too-big rocks. The calculations of the scientists suggest that the radius of the particles lies between several millimeters and several kilometers maximum. “If there were any bigger objects, the disks would be much more dynamic, the bodies would collide and thereby generate dust,” the Jena professor of astrophysics explains.

The cold debris disks are admittedly a relic of its former planet factory, but the growth to the size of planets stopped early on – even before bodies the size of asteroids or even dwarf planets could develop. “We don’t know why the development stopped,” Krivov says. “But the cold debris disks are proof that such belts can exist for over billions of years.”

The scientists came across the unusual debris disks with the help of the Herschel Space Observatory – the largest telescope that was ever launched into space. “Herschel was especially designed to detect cold objects, because it has measured the radiation in far infrared,” Prof. Krivov explains. In spite of its enormous effectiveness the observation of the cold debris disks was a demanding task even for Herschel. Thus scientists cannot rule out the possibility that the supposed debris disks could actually be background galaxies which just happen to be behind the central star. “Our studies however show that there is a high likelihood we are mostly dealing with real disks,“ Krivov states. As planned, Herschel entered retirement in April. The scientists reckon that they will gain final certainty about their findings with the help of data by further instruments like the radio telescope ALMA in the Chilean Atacama Desert.

Original Publication:
Krivov, A.V. et al.: Herschel‘s „Cold Debris Disks“: Background Galaxies or Quiescent Rims of Planetary Systems? The Astrophysical Journal (2013), (DOI:10.1088/0004-637X/772/1/32).
Prof. Dr. Alexander Krivov
Astrophysikalisches Institut und Universitätssternwarte der Universität Jena
Schillergässchen 2-3, 07745 Jena, Germany
Tel.: 03641 / 947530
E-Mail: krivov[at]

Claudia Hilbert | idw
Further information:

More articles from Physics and Astronomy:

nachricht Sharpening the X-ray view of the nanocosm
23.03.2018 | Changchun Institute of Optics, Fine Mechanics and Physics

nachricht Drug or duplicate?
23.03.2018 | Fraunhofer-Institut für Angewandte Festkörperphysik IAF

All articles from Physics and Astronomy >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Space observation with radar to secure Germany's space infrastructure

Satellites in near-Earth orbit are at risk due to the steady increase in space debris. But their mission in the areas of telecommunications, navigation or weather forecasts is essential for society. Fraunhofer FHR therefore develops radar-based systems which allow the detection, tracking and cataloging of even the smallest particles of debris. Satellite operators who have access to our data are in a better position to plan evasive maneuvers and prevent destructive collisions. From April, 25-29 2018, Fraunhofer FHR and its partners will exhibit the complementary radar systems TIRA and GESTRA as well as the latest radar techniques for space observation across three stands at the ILA Berlin.

The "traffic situation" in space is very tense: the Earth is currently being orbited not only by countless satellites but also by a large volume of space...

Im Focus: Researchers Discover New Anti-Cancer Protein

An international team of researchers has discovered a new anti-cancer protein. The protein, called LHPP, prevents the uncontrolled proliferation of cancer cells in the liver. The researchers led by Prof. Michael N. Hall from the Biozentrum, University of Basel, report in “Nature” that LHPP can also serve as a biomarker for the diagnosis and prognosis of liver cancer.

The incidence of liver cancer, also known as hepatocellular carcinoma, is steadily increasing. In the last twenty years, the number of cases has almost doubled...

Im Focus: Researchers at Fraunhofer monitor re-entry of Chinese space station Tiangong-1

In just a few weeks from now, the Chinese space station Tiangong-1 will re-enter the Earth's atmosphere where it will to a large extent burn up. It is possible that some debris will reach the Earth's surface. Tiangong-1 is orbiting the Earth uncontrolled at a speed of approx. 29,000 km/h.Currently the prognosis relating to the time of impact currently lies within a window of several days. The scientists at Fraunhofer FHR have already been monitoring Tiangong-1 for a number of weeks with their TIRA system, one of the most powerful space observation radars in the world, with a view to supporting the German Space Situational Awareness Center and the ESA with their re-entry forecasts.

Following the loss of radio contact with Tiangong-1 in 2016 and due to the low orbital height, it is now inevitable that the Chinese space station will...

Im Focus: Alliance „OLED Licht Forum“ – Key partner for OLED lighting solutions

Fraunhofer Institute for Organic Electronics, Electron Beam and Plasma Technology FEP, provider of research and development services for OLED lighting solutions, announces the founding of the “OLED Licht Forum” and presents latest OLED design and lighting solutions during light+building, from March 18th – 23rd, 2018 in Frankfurt a.M./Germany, at booth no. F91 in Hall 4.0.

They are united in their passion for OLED (organic light emitting diodes) lighting with all of its unique facets and application possibilities. Thus experts in...

Im Focus: Mars' oceans formed early, possibly aided by massive volcanic eruptions

Oceans formed before Tharsis and evolved together, shaping climate history of Mars

A new scenario seeking to explain how Mars' putative oceans came and went over the last 4 billion years implies that the oceans formed several hundred million...

All Focus news of the innovation-report >>>



Industry & Economy
Event News

New solar solutions for sustainable buildings and cities

23.03.2018 | Event News

Virtual reality conference comes to Reutlingen

19.03.2018 | Event News

Ultrafast Wireless and Chip Design at the DATE Conference in Dresden

16.03.2018 | Event News

Latest News

For graphite pellets, just add elbow grease

23.03.2018 | Materials Sciences

Unique communication strategy discovered in stem cell pathway controlling plant growth

23.03.2018 | Agricultural and Forestry Science

Sharpening the X-ray view of the nanocosm

23.03.2018 | Physics and Astronomy

Science & Research
Overview of more VideoLinks >>>