Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Cosmic Calculations for Exploring Where Stars Are Born

04.06.2012
A University of Delaware-led research team reports an advance in the June 1 issue of Science that may help astrophysicists more accurately analyze the vast molecular clouds of gas and dust where stars are born.

Krzysztof Szalewicz, professor of physics and astronomy at UD, was the principal investigator on the National Science Foundation funded research project, which solved equations of quantum mechanics to more precisely describe the interactions between molecules of hydrogen and carbon monoxide, the two most abundant gases in space.

Such calculations are important to spectroscopy, the science that identifies atoms or molecules by the color of light they absorb or emit. Sir Isaac Newton discovered that sunlight shining through a prism would separate into a rainbow of colors. Today, spectroscopy is essential to fields ranging from medical diagnostics to airport security.

In astrophysics, spectrometers attached to telescopes orbiting in space measure light across the visible, infrared, and microwave spectrum to detect and quantify the abundance of chemical elements and molecules, as well as their temperatures and densities, in places such as the vast Orion Nebula, a celestial maternity ward crowded with newborn stars, some 1,500 light years away.

Whereas carbon monoxide — the second-most abundant molecule in space — is easily detected by spectrometers, such is not the case for hydrogen. Despite ranking as the most abundant molecule in space, hydrogen emits and absorbs very little light in the spectral ranges that can be observed. Thus, researchers must deduce information about molecular hydrogen from its weak interactions with carbon monoxide in the interstellar medium (the stuff between the stars).

“The hydrogen spectra get lost on the way, but carbon monoxide is like a lighthouse — its spectra are observed more often than those of any other molecule,” Szalewicz says. “You can indirectly tell what the density of hydrogen is from the carbon monoxide spectra.”

Szalewicz and co-authors Piotr Jankowski, a former UD postdoctoral researcher who is now on the chemistry faculty at Nicolaus Copernicus University in Torun, Poland, and A. Robert W. McKellar, from the National Research Council in Ottawa, Canada, wanted to revisit the spectra of the hydrogen and carbon monoxide complex. The first time such a calculation was done was 14 years ago by Szalewicz and Jankowski, parallel to an accurate measurement by McKellar.

In their computational model, the scientists needed to determine first how electrons move around nuclei. To this end, they included simultaneous excitations of up to four electrons at a time. The energy levels produced by the rotations and vibrations of the nuclei then were computed and used to build a theoretical spectrum that could be compared with the measured one.

The team’s calculations, accomplished with the high-powered kolos computing cluster at UD, have resulted in theoretical spectra 100 times more accurate than those published 14 years ago. The theoretical and experimental spectra are now in near-perfect agreement, which allowed the team to “assign” the spectrum, that is, to determine how each spectral feature is related to the underlying motion of the nuclei, Szalewicz says.

The combined theoretical and experimental knowledge about this molecular complex now can be used to analyze recent results from satellite observatories to search for its direct spectral signal. Even more importantly, this knowledge can be used to get better information about the hydrogen molecule in space from indirect observations, Szalewicz notes.

“Spectroscopy provides the most precise information about matter that is available,” he says. “I am pleased that our computations have untangled such a complex problem.”

Szalewicz’s expertise is in numerically solving the equations for the motions of electrons resulting in molecules attracting or repelling each other and then using these interactions to look at different properties of clusters and condensed phases of matter.

His research has unveiled hidden properties of water and found a missing state in the beryllium dimer, both results previously reported in Science, and his findings about helium may lead to more accurate standards for measuring temperature and pressure.

Szalewicz was elected to the International Academy of Quantum Molecular Science in 2010 and is a fellow of the American Physical Society.

View the original story and images at http://www.udel.edu/udaily/2012/may/science-stars-053112.html

Andrea Boyle | Newswise Science News
Further information:
http://www.udel.edu
http://www.udel.edu/udaily/2012/may/science-stars-053112.html

More articles from Physics and Astronomy:

nachricht Study offers new theoretical approach to describing non-equilibrium phase transitions
27.04.2017 | DOE/Argonne National Laboratory

nachricht SwRI-led team discovers lull in Mars' giant impact history
26.04.2017 | Southwest Research Institute

All articles from Physics and Astronomy >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Making lightweight construction suitable for series production

More and more automobile companies are focusing on body parts made of carbon fiber reinforced plastics (CFRP). However, manufacturing and repair costs must be further reduced in order to make CFRP more economical in use. Together with the Volkswagen AG and five other partners in the project HolQueSt 3D, the Laser Zentrum Hannover e.V. (LZH) has developed laser processes for the automatic trimming, drilling and repair of three-dimensional components.

Automated manufacturing processes are the basis for ultimately establishing the series production of CFRP components. In the project HolQueSt 3D, the LZH has...

Im Focus: Wonder material? Novel nanotube structure strengthens thin films for flexible electronics

Reflecting the structure of composites found in nature and the ancient world, researchers at the University of Illinois at Urbana-Champaign have synthesized thin carbon nanotube (CNT) textiles that exhibit both high electrical conductivity and a level of toughness that is about fifty times higher than copper films, currently used in electronics.

"The structural robustness of thin metal films has significant importance for the reliable operation of smart skin and flexible electronics including...

Im Focus: Deep inside Galaxy M87

The nearby, giant radio galaxy M87 hosts a supermassive black hole (BH) and is well-known for its bright jet dominating the spectrum over ten orders of magnitude in frequency. Due to its proximity, jet prominence, and the large black hole mass, M87 is the best laboratory for investigating the formation, acceleration, and collimation of relativistic jets. A research team led by Silke Britzen from the Max Planck Institute for Radio Astronomy in Bonn, Germany, has found strong indication for turbulent processes connecting the accretion disk and the jet of that galaxy providing insights into the longstanding problem of the origin of astrophysical jets.

Supermassive black holes form some of the most enigmatic phenomena in astrophysics. Their enormous energy output is supposed to be generated by the...

Im Focus: A Quantum Low Pass for Photons

Physicists in Garching observe novel quantum effect that limits the number of emitted photons.

The probability to find a certain number of photons inside a laser pulse usually corresponds to a classical distribution of independent events, the so-called...

Im Focus: Microprocessors based on a layer of just three atoms

Microprocessors based on atomically thin materials hold the promise of the evolution of traditional processors as well as new applications in the field of flexible electronics. Now, a TU Wien research team led by Thomas Müller has made a breakthrough in this field as part of an ongoing research project.

Two-dimensional materials, or 2D materials for short, are extremely versatile, although – or often more precisely because – they are made up of just one or a...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Expert meeting “Health Business Connect” will connect international medical technology companies

20.04.2017 | Event News

Wenn der Computer das Gehirn austrickst

18.04.2017 | Event News

7th International Conference on Crystalline Silicon Photovoltaics in Freiburg on April 3-5, 2017

03.04.2017 | Event News

 
Latest News

Bare bones: Making bones transparent

27.04.2017 | Life Sciences

Study offers new theoretical approach to describing non-equilibrium phase transitions

27.04.2017 | Physics and Astronomy

From volcano's slope, NASA instrument looks sky high and to the future

27.04.2017 | Earth Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>