Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Control on shape of light particles opens the way to ‘quantum internet’

15.12.2014

In the same way as we now connect computers in networks through optical signals, it could also be possible to connect future quantum computers in a ‘quantum internet’.

The optical signals would then consist of individual light particles or photons. One prerequisite for a working quantum internet is control of the shape of these photons. Researchers at Eindhoven University of Technology (TU/e) and the FOM foundation have now succeeded for the first time in getting this control within the required short time. These findings are published today in Nature Communications.

Quantum computers are the dream computers of the future. They use the unique physics of the smallest particles– those described by quantum mechanics – to perform calculations. While today’s computers use bits that can be either 0 or 1, quantum computers perform calculations with ‘qubits’, which can be both 0 and 1 at the same time. That creates an unprecedented degree of extra computing power, which gives quantum computers much greater capabilities than today’s computers.

Quantum internet

Quantum computers could in principle communicate with each other by exchanging individual photons to create a ‘quantum internet’. The shape of the photons, in other words how their energy is distributed over time, is vital for successful transmission of information. This shape must be symmetric in time, while photons that are emitted by atoms normally have an asymmetric shape. Therefore, this process requires external control in order to create a quantum internet.

Optical cavity

Researchers at TU/e and FOM have succeeded in getting the required degree of control by embedding a quantum dot – a piece of semiconductor material that can transmit photons – into a ‘photonic crystal’, thereby creating an optical cavity. Then the researchers applied a very short electrical pulse to the cavity, which influences how the quantum dot interacts with it, and how the photon is emitted. By varying the strength of this pulse, they were able to control the shape of the transmitted photons.

Within a billionth of a second

The Eindhoven researchers are the first to achieve this, thanks to the use of electrical pulses shorter than nanosecond, a billionth of a second. This is vital for use in quantum communication, as research leader Andrea Fiore of TU/e explains: “The emission of a photon only lasts for one nanosecond, so if you want to change anything you have to do it within that time. It’s like the shutter of a high-speed camera, which has to be very short if you want to capture something that changes very fast in an image. By controlling the speed at which you send a photon, you can in principle achieve very efficient exchange of photons, which is important for the future quantum internet.”

The research is financed by the FOM Foundation and Technology Foundation STW.


Full bibliographic information

Francesco Pagliano et al, Dynamically controlling the emission of single excitons in photonic crystal cavities, Nature Communications (15 December 2014)
DOI: 10.1038/ncomm6786

Notes for editors
The publication is available on request. For more information, please contact TU/e professor Andrea Fiore, research leader of this project (a.fiore@tue.nl / +31 6 30239122), or Science Information Officer Barry van der Meer (b.v.d.meer@tue.nl / +31 6 28783207).

Barry van der Meer | AlphaGalileo
Further information:
http://www.tue.nl

More articles from Physics and Astronomy:

nachricht Major discovery in controlling quantum states of single atoms
20.02.2018 | Institute for Basic Science

nachricht Observing and controlling ultrafast processes with attosecond resolution
20.02.2018 | Technische Universität München

All articles from Physics and Astronomy >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: In best circles: First integrated circuit from self-assembled polymer

For the first time, a team of researchers at the Max-Planck Institute (MPI) for Polymer Research in Mainz, Germany, has succeeded in making an integrated circuit (IC) from just a monolayer of a semiconducting polymer via a bottom-up, self-assembly approach.

In the self-assembly process, the semiconducting polymer arranges itself into an ordered monolayer in a transistor. The transistors are binary switches used...

Im Focus: Demonstration of a single molecule piezoelectric effect

Breakthrough provides a new concept of the design of molecular motors, sensors and electricity generators at nanoscale

Researchers from the Institute of Organic Chemistry and Biochemistry of the CAS (IOCB Prague), Institute of Physics of the CAS (IP CAS) and Palacký University...

Im Focus: Hybrid optics bring color imaging using ultrathin metalenses into focus

For photographers and scientists, lenses are lifesavers. They reflect and refract light, making possible the imaging systems that drive discovery through the microscope and preserve history through cameras.

But today's glass-based lenses are bulky and resist miniaturization. Next-generation technologies, such as ultrathin cameras or tiny microscopes, require...

Im Focus: Stem cell divisions in the adult brain seen for the first time

Scientists from the University of Zurich have succeeded for the first time in tracking individual stem cells and their neuronal progeny over months within the intact adult brain. This study sheds light on how new neurons are produced throughout life.

The generation of new nerve cells was once thought to taper off at the end of embryonic development. However, recent research has shown that the adult brain...

Im Focus: Interference as a new method for cooling quantum devices

Theoretical physicists propose to use negative interference to control heat flow in quantum devices. Study published in Physical Review Letters

Quantum computer parts are sensitive and need to be cooled to very low temperatures. Their tiny size makes them particularly susceptible to a temperature...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

2nd International Conference on High Temperature Shape Memory Alloys (HTSMAs)

15.02.2018 | Event News

Aachen DC Grid Summit 2018

13.02.2018 | Event News

How Global Climate Policy Can Learn from the Energy Transition

12.02.2018 | Event News

 
Latest News

'Lipid asymmetry' plays key role in activating immune cells

20.02.2018 | Life Sciences

MRI technique differentiates benign breast lesions from malignancies

20.02.2018 | Medical Engineering

Major discovery in controlling quantum states of single atoms

20.02.2018 | Physics and Astronomy

VideoLinks
Science & Research
Overview of more VideoLinks >>>