Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Comet cause for climate change theory dealt blow by fungus

17.06.2010
A team of scientists – led by Professor Andrew C Scott of the Department of Earth Sciences at Royal Holloway, University of London – have revealed that neither comet nor catastrophe were the cause for abrupt climate change some 12,900 years ago.

Theories of impacts and their influence on animal extinctions and climate change are receiving increasing attention both in the scientific and popular literature. Despite increasing evidence to dispute the theory, the idea that onset of the Younger Dryas (‘Big Freeze’) climate interval, mega-faunal extinctions, including mammoths, the demise of the North American Clovis culture, and a range of other effects, is due to a comet airburst and/or impact event has remained alive both through written and television media despite growing negative scientific evidence.


Specimen from Arlington Canyon, Santa Rosa Island, California, U.S.A.. (12,800-13,100 cal BP), section through spherule.

One key aspect of this claim centers on the origin of ‘carbonaceous spherules’ that purportedly formed during intense, impact-ignited wildfires. Theorists have used these ‘carbonaceous spherules’ as evidence for their comet impact-theories, but this new study concludes that those supposed clues are nothing more than fossilized balls of fungus, charcoal, and fecal pellets. These naturally-occurring organic materials also date from a period thousands of years both before and after the Younger Dryas period began, further suggesting that there was no sudden impact event.

The research team examined organic residues from some of the proposed sites to investigate the nature of these organic spheres and ‘carbon elongates’ that ranged in size from ½ to 2mm (1/10 inch).

Samples from Pleistocene-Holocene sedimentary sequences in the California Channel Islands and other sites show that carbon spherules and elongate forms are common in samples dating to before, during, and well after the 12,900-year time horizon, including from modern samples. Professor Scott says, “Importantly, we were able demonstrate that these organic spheres were found commonly in both modern and ancient sediments and were not just restricted to any particular layer”.

The researchers undertook a series of microscopic studies, including using the advanced Swiss Light Source to probe their internal structure using Synchrotron Radiation X-ray Tomographic Microscopy (SRXTM) to show that carbon spherules have morphologies and internal structures identical to fungal sclerotia (such as Sclerotium and Cenococcum). In investigating these objects, Professor Scott commented: “These spherules had been commonly seen by researchers but little attention was paid to them and so few images existed in the literature. Perhaps it is not surprising that they have been misidentified. Some of the elongate forms described in other pa pers by the impact supporters are arthropod fecal pellets, some almost certainly from termites”.

Professor Scott points out that “we should always have a skeptical attitude to new theories and to test them thoroughly and if the evidence goes against them they should be abandoned”. Professor Pinter, one the report’s authors, from Southern Illinois University, adds, “I think we have reached that stage with the Younger Dryas impact theory”.

The paper, entitled ‘Fungus, not comet or catastrophe, accounts for carbonaceous spherules in the Younger Dryas ‘impact layer’, is published in the journal ‘Geophysical Research Letters’.

Notes to Editors

For further information contact: Simon Doyle, Senior Press and Communications Officer, Royal Holloway, University of London, 01784 443967; simon.doyle@rhul.ac.uk

Professor Scott co-authored the paper with:
N. Pinter (Southern Illinois University), M.E. Collinson, M. Hardiman (Royal Holloway University of London), R.S. Anderson (Northern Arizona University), A.P.R. Brain (King’s College, London), S.Y. Smith (University of Michigan), F. Marone and M. Stampanoni (Swiss Light Source, Paul Scherrer Institut, Switzerland).

Simon Doyle | RHUL
Further information:
http://www.rhul.ac.uk

More articles from Physics and Astronomy:

nachricht Enhancing the quantum sensing capabilities of diamond
23.11.2017 | The Hebrew University of Jerusalem

nachricht Quantum optics allows us to abandon expensive lasers in spectroscopy
22.11.2017 | Lomonosov Moscow State University

All articles from Physics and Astronomy >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Frictional Heat Powers Hydrothermal Activity on Enceladus

Computer simulation shows how the icy moon heats water in a porous rock core

Heat from the friction of rocks caused by tidal forces could be the “engine” for the hydrothermal activity on Saturn's moon Enceladus. This presupposes that...

Im Focus: Nanoparticles help with malaria diagnosis – new rapid test in development

The WHO reports an estimated 429,000 malaria deaths each year. The disease mostly affects tropical and subtropical regions and in particular the African continent. The Fraunhofer Institute for Silicate Research ISC teamed up with the Fraunhofer Institute for Molecular Biology and Applied Ecology IME and the Institute of Tropical Medicine at the University of Tübingen for a new test method to detect malaria parasites in blood. The idea of the research project “NanoFRET” is to develop a highly sensitive and reliable rapid diagnostic test so that patient treatment can begin as early as possible.

Malaria is caused by parasites transmitted by mosquito bite. The most dangerous form of malaria is malaria tropica. Left untreated, it is fatal in most cases....

Im Focus: A “cosmic snake” reveals the structure of remote galaxies

The formation of stars in distant galaxies is still largely unexplored. For the first time, astron-omers at the University of Geneva have now been able to closely observe a star system six billion light-years away. In doing so, they are confirming earlier simulations made by the University of Zurich. One special effect is made possible by the multiple reflections of images that run through the cosmos like a snake.

Today, astronomers have a pretty accurate idea of how stars were formed in the recent cosmic past. But do these laws also apply to older galaxies? For around a...

Im Focus: Visual intelligence is not the same as IQ

Just because someone is smart and well-motivated doesn't mean he or she can learn the visual skills needed to excel at tasks like matching fingerprints, interpreting medical X-rays, keeping track of aircraft on radar displays or forensic face matching.

That is the implication of a new study which shows for the first time that there is a broad range of differences in people's visual ability and that these...

Im Focus: Novel Nano-CT device creates high-resolution 3D-X-rays of tiny velvet worm legs

Computer Tomography (CT) is a standard procedure in hospitals, but so far, the technology has not been suitable for imaging extremely small objects. In PNAS, a team from the Technical University of Munich (TUM) describes a Nano-CT device that creates three-dimensional x-ray images at resolutions up to 100 nanometers. The first test application: Together with colleagues from the University of Kassel and Helmholtz-Zentrum Geesthacht the researchers analyzed the locomotory system of a velvet worm.

During a CT analysis, the object under investigation is x-rayed and a detector measures the respective amount of radiation absorbed from various angles....

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Ecology Across Borders: International conference brings together 1,500 ecologists

15.11.2017 | Event News

Road into laboratory: Users discuss biaxial fatigue-testing for car and truck wheel

15.11.2017 | Event News

#Berlin5GWeek: The right network for Industry 4.0

30.10.2017 | Event News

 
Latest News

Underwater acoustic localization of marine mammals and vehicles

23.11.2017 | Information Technology

Enhancing the quantum sensing capabilities of diamond

23.11.2017 | Physics and Astronomy

Meadows beat out shrubs when it comes to storing carbon

23.11.2017 | Life Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>