New clues to air circulation in the atmosphere

The new observational study describes how air rises and falls in the atmosphere above the Earth’s surface, creating the world’s weather. This process of atmospheric circulation creates weather patterns and influences the climate of the planet. It is important to understand these processes in order to predict weather events, and to improve and test climate models.

Previous theories have claimed that there are just two large circular systems of air in the atmosphere, one either side of the equator. These theories suggested that air rises at the equator and then travels towards either the north or south polar regions, where it falls.

The new research suggests instead that there are two cells in both the northern and southern hemispheres. In the first cell, air rises at the equator and then falls in the subtropics. In the second cell, air rises in the mid-latitudes – approximately 30 to 60 degrees north and south of the equator – and then falls in the polar regions.

The researchers say that this second cell of rising air is a mechanism responsible for setting the distribution of temperature and winds in the mid-latitudes which has not been fully appreciated before. The mid-latitudes include the UK, Europe and most of the United States.

Dr Arnaud Czaja from Imperial College London’s Department of Physics and the Grantham Institute for Climate Change, one of the authors of the new research, explains: “Our model suggests that there is a second cell of air in each hemisphere which is characterised by air rising, clouds forming, storms developing and other processes associated with moisture in the air occurring in the mid-latitudes.”

Current theories to describe weather patterns in the mid-latitudes do not take these moisture-based processes into consideration. Dr Czaja argues that these theories are therefore incomplete, and that water vapour plays as much of an important role in the weather systems of the mid-latitudes as it does in the tropics, where it is a well-documented driver of weather events.

The research team carried out their study by conducting new analyses of extensive meteorological data. Dr Czaja says that he hopes the research will lead to a more detailed understanding of how air circulation in our atmosphere works, and how it affects the weather:

“With more attention than ever before being focused on understanding our planet’s climate, weather systems and atmosphere, it’s important that scientists challenge their own assumptions and current theories of how these complex processes work. I think our study sheds new light on the driving forces behind the weather in the mid-latitudes,” Dr Czaja added.

Media Contact

Danielle Reeves alfa

More Information:

http://www.imperial.ac.uk

All latest news from the category: Physics and Astronomy

This area deals with the fundamental laws and building blocks of nature and how they interact, the properties and the behavior of matter, and research into space and time and their structures.

innovations-report provides in-depth reports and articles on subjects such as astrophysics, laser technologies, nuclear, quantum, particle and solid-state physics, nanotechnologies, planetary research and findings (Mars, Venus) and developments related to the Hubble Telescope.

Back to home

Comments (0)

Write a comment

Newest articles

A universal framework for spatial biology

SpatialData is a freely accessible tool to unify and integrate data from different omics technologies accounting for spatial information, which can provide holistic insights into health and disease. Biological processes…

How complex biological processes arise

A $20 million grant from the U.S. National Science Foundation (NSF) will support the establishment and operation of the National Synthesis Center for Emergence in the Molecular and Cellular Sciences (NCEMS) at…

Airborne single-photon lidar system achieves high-resolution 3D imaging

Compact, low-power system opens doors for photon-efficient drone and satellite-based environmental monitoring and mapping. Researchers have developed a compact and lightweight single-photon airborne lidar system that can acquire high-resolution 3D…

Partners & Sponsors