Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Cloudy with a Chance of...Solar Flares?

29.09.2014

Earl Scime, Oleg D. Jefimenko Professor of Physics and interim vice president of research at West Virginia University, has been awarded a grant from the National Science Foundation to better understand the effects of space weather.

Scime is using his $590,000 grant, to study double layers, structures composed of strong electric fields, found within plasma, capable of accelerating particles to high speeds. He is looking specifically at how these structures form, and what keeps them around in space.

It’s a small part of a bigger picture. Scime hopes to be able to model what is happening in space, in his lab, to be able to determine what exactly happens during powerful space storms.

On Sept. 11, a strong solar flare launched off of the sun, launching a massive burst of electrified gas into space. This is known as a coronal mass ejection. This burst and others like it continue to threaten technology on Earth and have been an area of interest for years at NASA.

The results of his studies could be used in sophisticated models of the space environment that would allow researchers to be able to predict whether or not a solar event will lead to harmful space weather. With advance warning, critical power, telecommunication, and other systems on Earth could be protected during a space weather storm.

“When we have large space weather events you can have power distribution systems fail, oil pipelines fail, spacecraft get knocked out permanently. Your standard communications satellite costs a couple-hundred million to a half a billion dollars. When those fail it can shut down long distance telephone communication for an entire country,” Scime said.

Scime specializes in space-relevant plasma physics and has recently also received $720,000 of funding from NASA for a project to build a micro-sized space instrument that will go into space and measure speed and density of particles in space, a whole new area of research at WVU.

“We hope to have our first prototypes ready by the end of next summer for testing. These are going to be space instruments the size of a sugar cube, but with the capabilities of instruments that, up to now, have been much larger,” Scime said.

For more information, contact Earl Scime at 304-293-5125 or escime@wvu.edu.

Check http://wvutoday.wvu.edu/ daily for the latest news from the University. Follow @WVUToday on Twitter.

Devon Copeland | newswise

More articles from Physics and Astronomy:

nachricht Breakthrough with a chain of gold atoms
17.02.2017 | Universität Konstanz

nachricht New functional principle to generate the „third harmonic“
16.02.2017 | Laser Zentrum Hannover e.V.

All articles from Physics and Astronomy >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Breakthrough with a chain of gold atoms

In the field of nanoscience, an international team of physicists with participants from Konstanz has achieved a breakthrough in understanding heat transport

In the field of nanoscience, an international team of physicists with participants from Konstanz has achieved a breakthrough in understanding heat transport

Im Focus: DNA repair: a new letter in the cell alphabet

Results reveal how discoveries may be hidden in scientific “blind spots”

Cells need to repair damaged DNA in our genes to prevent the development of cancer and other diseases. Our cells therefore activate and send “repair-proteins”...

Im Focus: Dresdner scientists print tomorrow’s world

The Fraunhofer IWS Dresden and Technische Universität Dresden inaugurated their jointly operated Center for Additive Manufacturing Dresden (AMCD) with a festive ceremony on February 7, 2017. Scientists from various disciplines perform research on materials, additive manufacturing processes and innovative technologies, which build up components in a layer by layer process. This technology opens up new horizons for component design and combinations of functions. For example during fabrication, electrical conductors and sensors are already able to be additively manufactured into components. They provide information about stress conditions of a product during operation.

The 3D-printing technology, or additive manufacturing as it is often called, has long made the step out of scientific research laboratories into industrial...

Im Focus: Mimicking nature's cellular architectures via 3-D printing

Research offers new level of control over the structure of 3-D printed materials

Nature does amazing things with limited design materials. Grass, for example, can support its own weight, resist strong wind loads, and recover after being...

Im Focus: Three Magnetic States for Each Hole

Nanometer-scale magnetic perforated grids could create new possibilities for computing. Together with international colleagues, scientists from the Helmholtz Zentrum Dresden-Rossendorf (HZDR) have shown how a cobalt grid can be reliably programmed at room temperature. In addition they discovered that for every hole ("antidot") three magnetic states can be configured. The results have been published in the journal "Scientific Reports".

Physicist Dr. Rantej Bali from the HZDR, together with scientists from Singapore and Australia, designed a special grid structure in a thin layer of cobalt in...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Booth and panel discussion – The Lindau Nobel Laureate Meetings at the AAAS 2017 Annual Meeting

13.02.2017 | Event News

Complex Loading versus Hidden Reserves

10.02.2017 | Event News

International Conference on Crystal Growth in Freiburg

09.02.2017 | Event News

 
Latest News

Biocompatible 3-D tracking system has potential to improve robot-assisted surgery

17.02.2017 | Medical Engineering

Real-time MRI analysis powered by supercomputers

17.02.2017 | Medical Engineering

Antibiotic effective against drug-resistant bacteria in pediatric skin infections

17.02.2017 | Health and Medicine

VideoLinks
B2B-VideoLinks
More VideoLinks >>>