Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:


Cloudy with a Chance of...Solar Flares?


Earl Scime, Oleg D. Jefimenko Professor of Physics and interim vice president of research at West Virginia University, has been awarded a grant from the National Science Foundation to better understand the effects of space weather.

Scime is using his $590,000 grant, to study double layers, structures composed of strong electric fields, found within plasma, capable of accelerating particles to high speeds. He is looking specifically at how these structures form, and what keeps them around in space.

It’s a small part of a bigger picture. Scime hopes to be able to model what is happening in space, in his lab, to be able to determine what exactly happens during powerful space storms.

On Sept. 11, a strong solar flare launched off of the sun, launching a massive burst of electrified gas into space. This is known as a coronal mass ejection. This burst and others like it continue to threaten technology on Earth and have been an area of interest for years at NASA.

The results of his studies could be used in sophisticated models of the space environment that would allow researchers to be able to predict whether or not a solar event will lead to harmful space weather. With advance warning, critical power, telecommunication, and other systems on Earth could be protected during a space weather storm.

“When we have large space weather events you can have power distribution systems fail, oil pipelines fail, spacecraft get knocked out permanently. Your standard communications satellite costs a couple-hundred million to a half a billion dollars. When those fail it can shut down long distance telephone communication for an entire country,” Scime said.

Scime specializes in space-relevant plasma physics and has recently also received $720,000 of funding from NASA for a project to build a micro-sized space instrument that will go into space and measure speed and density of particles in space, a whole new area of research at WVU.

“We hope to have our first prototypes ready by the end of next summer for testing. These are going to be space instruments the size of a sugar cube, but with the capabilities of instruments that, up to now, have been much larger,” Scime said.

For more information, contact Earl Scime at 304-293-5125 or

Check daily for the latest news from the University. Follow @WVUToday on Twitter.

Devon Copeland | newswise

More articles from Physics and Astronomy:

nachricht Gamma ray camera offers new view on ultra-high energy electrons in plasma
28.10.2016 | American Physical Society

nachricht Scientists measure how ions bombard fusion device walls
28.10.2016 | American Physical Society

All articles from Physics and Astronomy >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Novel light sources made of 2D materials

Physicists from the University of Würzburg have designed a light source that emits photon pairs. Two-photon sources are particularly well suited for tap-proof data encryption. The experiment's key ingredients: a semiconductor crystal and some sticky tape.

So-called monolayers are at the heart of the research activities. These "super materials" (as the prestigious science magazine "Nature" puts it) have been...

Im Focus: Etching Microstructures with Lasers

Ultrafast lasers have introduced new possibilities in engraving ultrafine structures, and scientists are now also investigating how to use them to etch microstructures into thin glass. There are possible applications in analytics (lab on a chip) and especially in electronics and the consumer sector, where great interest has been shown.

This new method was born of a surprising phenomenon: irradiating glass in a particular way with an ultrafast laser has the effect of making the glass up to a...

Im Focus: Light-driven atomic rotations excite magnetic waves

Terahertz excitation of selected crystal vibrations leads to an effective magnetic field that drives coherent spin motion

Controlling functional properties by light is one of the grand goals in modern condensed matter physics and materials science. A new study now demonstrates how...

Im Focus: New 3-D wiring technique brings scalable quantum computers closer to reality

Researchers from the Institute for Quantum Computing (IQC) at the University of Waterloo led the development of a new extensible wiring technique capable of controlling superconducting quantum bits, representing a significant step towards to the realization of a scalable quantum computer.

"The quantum socket is a wiring method that uses three-dimensional wires based on spring-loaded pins to address individual qubits," said Jeremy Béjanin, a PhD...

Im Focus: Scientists develop a semiconductor nanocomposite material that moves in response to light

In a paper in Scientific Reports, a research team at Worcester Polytechnic Institute describes a novel light-activated phenomenon that could become the basis for applications as diverse as microscopic robotic grippers and more efficient solar cells.

A research team at Worcester Polytechnic Institute (WPI) has developed a revolutionary, light-activated semiconductor nanocomposite material that can be used...

All Focus news of the innovation-report >>>



Event News

#IC2S2: When Social Science meets Computer Science - GESIS will host the IC2S2 conference 2017

14.10.2016 | Event News

Agricultural Trade Developments and Potentials in Central Asia and the South Caucasus

14.10.2016 | Event News

World Health Summit – Day Three: A Call to Action

12.10.2016 | Event News

Latest News

Prototype device for measuring graphene-based electromagnetic radiation created

28.10.2016 | Power and Electrical Engineering

Gamma ray camera offers new view on ultra-high energy electrons in plasma

28.10.2016 | Physics and Astronomy

When fat cells change their colour

28.10.2016 | Life Sciences

More VideoLinks >>>