Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Closing in on the Phenomenon of Superconductivity With a Two-dimensional Atomic Gas

09.06.2015

Transition into superfluid phase: Heidelberg physicists characterise an exotic quantum superfluid

Using an exotic quantum superfluid that originates in a two-dimensional atomic gas, researchers from Heidelberg University are closing in on the phenomenon of superconductivity. The team headed by Prof. Dr. Selim Jochim of the Institute for Physics is using this special gas as a model system to more easily study the largely unknown mechanism of the superfluid phase transition in 2D structures.


Experimental setup to generate a two-dimensional ultracold quantum gas

In the background is the vacuum chamber in which the researchers prepared the quantum superfluid. The mirrors and lenses needed to create the laser trap are seen in the foreground. This apparatus allows the physicists to generate a two-dimensional ultracold gas every 15 seconds and then measure its properties. Photo: Martin Ries


Atomic gas in a magneto-optical trap

The luminous red cloud suspended in the centre of the vacuum chamber consists of approximately one billion lithium atoms. Their temperature is about 500 microkelvins, or about 500 millionths of a degree above absolute zero at negative 273.15 degrees Celsius. The atoms are captured by laser beams, cooled, and used as the foundation for all the experiments conducted by Prof. Dr. Selim Jochim’s team. Photo: Martin Ries

The researchers hope to gain new insight into the so-called room-temperature superconductor, a hypothetical material that does not require cooling to achieve lossless conduction of electricity. The research results were published in the journal “Physical Review Letters”.

Two of the most impressive phenomena that exhibit quantum mechanical behaviour in the “normal” world are superfluidity and its by-product, superconductivity. In physics, superfluidity is a state of matter in which a fluid loses all internal resistance.

Superconductivity results when the electrons in a material behave like a superfluid liquid. They flow without encountering any friction, and the electrical resistance drops to zero. This state occurs only below a certain critical temperature, which is different for every superconductor.

This behaviour is well understood in the conventional superconductor, in which the electrons move in three dimensions. But the problem is that the superconducting state can only be achieved at very cold temperatures well under negative 200 degrees Celsius. The necessary extensive cooling hampers a technological application, according to physicist Dr. Martin Ries.

“For several years, it has been possible to produce high-temperature superconductors. Their critical temperature is significantly higher, but unfortunately still just under negative 130 degrees Celsius. Additionally, we only have a partial understanding of the way they work, making it difficult to develop better superconductors of this kind,” says the scientist, who is a member of Prof. Jochim’s research team.

As Dr. Ries explains, science assumes that electrons can only move in two dimensions in high-temperature superconductors. So the Heidelberg physicists focused their research into superfluidity and superconductivity on two-dimensional structures. The superfluid transition is quite different between 2D and 3D structures, and the two-dimensional transition mechanism remains largely a mystery that is difficult to pin down theoretically.

Although the so-called BKT theory did address it in the 1970s, it is only valid if the forces between the electrons are weak. “But what exactly happens with stronger forces is not known, and that is precisely the scenario of major significance,” says Dr. Ries.

Jochim’s team of physicists has now succeeded in building a simple model system to perform a quantum simulation of the superfluid phase transition in 2D structures. They are using a two-dimensional ultracold gas captured in a laser trap. “We are able to create a ‘clean’ system that is easier to understand and in which the quantum mechanical behaviour of the particles resembles that of the electrons in two-dimensional structures,” reports Dr. Ries.

It actually allowed the researchers to observe the transition into the superfluid phase at low temperatures and measure the critical temperature for any strength of interparticle forces. “This gives us the ability to more easily test the various theories for 2D superfluidity in the future,” explains Prof. Jochim, whose team is currently investigating the correlations in the superfluid phase. “Over the long term, we hope to gain a better understanding of high-temperature superconductivity that could lead to the development of a room-temperature superconductor at some point in the future.”

This research was conducted by a cooperation of experimental and theoretical physicists at Heidelberg University's Center for Quantum Dynamics. For their article published in the “Physical Review Letters”, the authors received the coveted “Editors’ Suggestion” distinction.

Original publication:
M.G. Ries, A.N. Wenz, G. Zürn, L. Bayha, I. Boettcher, D. Kedar, P.A. Murthy, M. Neidig, T. Lompe and S. Jochim: Observation of Pair Condensation in the Quasi-2D BEC-BCS Crossover. Physical Review Letters 114, 230401 (8 June 2015), doi: 10.1103/PhysRevLett.114.230401

Contact:
Dr. Martin Ries
Institute for Physics
Phone: +49 6221 54-19484
martin.ries@physi.uni-heidelberg.de

Communications and Marketing
Press Office, phone: +49 6221 54-2311
presse@rektorat.uni-heidelberg.de

Weitere Informationen:

h

Marietta Fuhrmann-Koch | idw - Informationsdienst Wissenschaft

More articles from Physics and Astronomy:

nachricht A tale of two pulsars' tails: Plumes offer geometry lessons to astronomers
18.01.2017 | Penn State

nachricht Studying fundamental particles in materials
17.01.2017 | Max-Planck-Institut für Struktur und Dynamik der Materie

All articles from Physics and Astronomy >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: How gut bacteria can make us ill

HZI researchers decipher infection mechanisms of Yersinia and immune responses of the host

Yersiniae cause severe intestinal infections. Studies using Yersinia pseudotuberculosis as a model organism aim to elucidate the infection mechanisms of these...

Im Focus: Interfacial Superconductivity: Magnetic and superconducting order revealed simultaneously

Researchers from the University of Hamburg in Germany, in collaboration with colleagues from the University of Aarhus in Denmark, have synthesized a new superconducting material by growing a few layers of an antiferromagnetic transition-metal chalcogenide on a bismuth-based topological insulator, both being non-superconducting materials.

While superconductivity and magnetism are generally believed to be mutually exclusive, surprisingly, in this new material, superconducting correlations...

Im Focus: Studying fundamental particles in materials

Laser-driving of semimetals allows creating novel quasiparticle states within condensed matter systems and switching between different states on ultrafast time scales

Studying properties of fundamental particles in condensed matter systems is a promising approach to quantum field theory. Quasiparticles offer the opportunity...

Im Focus: Designing Architecture with Solar Building Envelopes

Among the general public, solar thermal energy is currently associated with dark blue, rectangular collectors on building roofs. Technologies are needed for aesthetically high quality architecture which offer the architect more room for manoeuvre when it comes to low- and plus-energy buildings. With the “ArKol” project, researchers at Fraunhofer ISE together with partners are currently developing two façade collectors for solar thermal energy generation, which permit a high degree of design flexibility: a strip collector for opaque façade sections and a solar thermal blind for transparent sections. The current state of the two developments will be presented at the BAU 2017 trade fair.

As part of the “ArKol – development of architecturally highly integrated façade collectors with heat pipes” project, Fraunhofer ISE together with its partners...

Im Focus: How to inflate a hardened concrete shell with a weight of 80 t

At TU Wien, an alternative for resource intensive formwork for the construction of concrete domes was developed. It is now used in a test dome for the Austrian Federal Railways Infrastructure (ÖBB Infrastruktur).

Concrete shells are efficient structures, but not very resource efficient. The formwork for the construction of concrete domes alone requires a high amount of...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

12V, 48V, high-voltage – trends in E/E automotive architecture

10.01.2017 | Event News

2nd Conference on Non-Textual Information on 10 and 11 May 2017 in Hannover

09.01.2017 | Event News

Nothing will happen without batteries making it happen!

05.01.2017 | Event News

 
Latest News

A big nano boost for solar cells

18.01.2017 | Power and Electrical Engineering

Glass's off-kilter harmonies

18.01.2017 | Materials Sciences

Toward a 'smart' patch that automatically delivers insulin when needed

18.01.2017 | Life Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>