Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Closing in on the Phenomenon of Superconductivity With a Two-dimensional Atomic Gas

09.06.2015

Transition into superfluid phase: Heidelberg physicists characterise an exotic quantum superfluid

Using an exotic quantum superfluid that originates in a two-dimensional atomic gas, researchers from Heidelberg University are closing in on the phenomenon of superconductivity. The team headed by Prof. Dr. Selim Jochim of the Institute for Physics is using this special gas as a model system to more easily study the largely unknown mechanism of the superfluid phase transition in 2D structures.


Experimental setup to generate a two-dimensional ultracold quantum gas

In the background is the vacuum chamber in which the researchers prepared the quantum superfluid. The mirrors and lenses needed to create the laser trap are seen in the foreground. This apparatus allows the physicists to generate a two-dimensional ultracold gas every 15 seconds and then measure its properties. Photo: Martin Ries


Atomic gas in a magneto-optical trap

The luminous red cloud suspended in the centre of the vacuum chamber consists of approximately one billion lithium atoms. Their temperature is about 500 microkelvins, or about 500 millionths of a degree above absolute zero at negative 273.15 degrees Celsius. The atoms are captured by laser beams, cooled, and used as the foundation for all the experiments conducted by Prof. Dr. Selim Jochim’s team. Photo: Martin Ries

The researchers hope to gain new insight into the so-called room-temperature superconductor, a hypothetical material that does not require cooling to achieve lossless conduction of electricity. The research results were published in the journal “Physical Review Letters”.

Two of the most impressive phenomena that exhibit quantum mechanical behaviour in the “normal” world are superfluidity and its by-product, superconductivity. In physics, superfluidity is a state of matter in which a fluid loses all internal resistance.

Superconductivity results when the electrons in a material behave like a superfluid liquid. They flow without encountering any friction, and the electrical resistance drops to zero. This state occurs only below a certain critical temperature, which is different for every superconductor.

This behaviour is well understood in the conventional superconductor, in which the electrons move in three dimensions. But the problem is that the superconducting state can only be achieved at very cold temperatures well under negative 200 degrees Celsius. The necessary extensive cooling hampers a technological application, according to physicist Dr. Martin Ries.

“For several years, it has been possible to produce high-temperature superconductors. Their critical temperature is significantly higher, but unfortunately still just under negative 130 degrees Celsius. Additionally, we only have a partial understanding of the way they work, making it difficult to develop better superconductors of this kind,” says the scientist, who is a member of Prof. Jochim’s research team.

As Dr. Ries explains, science assumes that electrons can only move in two dimensions in high-temperature superconductors. So the Heidelberg physicists focused their research into superfluidity and superconductivity on two-dimensional structures. The superfluid transition is quite different between 2D and 3D structures, and the two-dimensional transition mechanism remains largely a mystery that is difficult to pin down theoretically.

Although the so-called BKT theory did address it in the 1970s, it is only valid if the forces between the electrons are weak. “But what exactly happens with stronger forces is not known, and that is precisely the scenario of major significance,” says Dr. Ries.

Jochim’s team of physicists has now succeeded in building a simple model system to perform a quantum simulation of the superfluid phase transition in 2D structures. They are using a two-dimensional ultracold gas captured in a laser trap. “We are able to create a ‘clean’ system that is easier to understand and in which the quantum mechanical behaviour of the particles resembles that of the electrons in two-dimensional structures,” reports Dr. Ries.

It actually allowed the researchers to observe the transition into the superfluid phase at low temperatures and measure the critical temperature for any strength of interparticle forces. “This gives us the ability to more easily test the various theories for 2D superfluidity in the future,” explains Prof. Jochim, whose team is currently investigating the correlations in the superfluid phase. “Over the long term, we hope to gain a better understanding of high-temperature superconductivity that could lead to the development of a room-temperature superconductor at some point in the future.”

This research was conducted by a cooperation of experimental and theoretical physicists at Heidelberg University's Center for Quantum Dynamics. For their article published in the “Physical Review Letters”, the authors received the coveted “Editors’ Suggestion” distinction.

Original publication:
M.G. Ries, A.N. Wenz, G. Zürn, L. Bayha, I. Boettcher, D. Kedar, P.A. Murthy, M. Neidig, T. Lompe and S. Jochim: Observation of Pair Condensation in the Quasi-2D BEC-BCS Crossover. Physical Review Letters 114, 230401 (8 June 2015), doi: 10.1103/PhysRevLett.114.230401

Contact:
Dr. Martin Ries
Institute for Physics
Phone: +49 6221 54-19484
martin.ries@physi.uni-heidelberg.de

Communications and Marketing
Press Office, phone: +49 6221 54-2311
presse@rektorat.uni-heidelberg.de

Weitere Informationen:

h

Marietta Fuhrmann-Koch | idw - Informationsdienst Wissenschaft

More articles from Physics and Astronomy:

nachricht Tracing aromatic molecules in the early universe
23.03.2017 | University of California - Riverside

nachricht New study maps space dust in 3-D
23.03.2017 | DOE/Lawrence Berkeley National Laboratory

All articles from Physics and Astronomy >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Giant Magnetic Fields in the Universe

Astronomers from Bonn and Tautenburg in Thuringia (Germany) used the 100-m radio telescope at Effelsberg to observe several galaxy clusters. At the edges of these large accumulations of dark matter, stellar systems (galaxies), hot gas, and charged particles, they found magnetic fields that are exceptionally ordered over distances of many million light years. This makes them the most extended magnetic fields in the universe known so far.

The results will be published on March 22 in the journal „Astronomy & Astrophysics“.

Galaxy clusters are the largest gravitationally bound structures in the universe. With a typical extent of about 10 million light years, i.e. 100 times the...

Im Focus: Tracing down linear ubiquitination

Researchers at the Goethe University Frankfurt, together with partners from the University of Tübingen in Germany and Queen Mary University as well as Francis Crick Institute from London (UK) have developed a novel technology to decipher the secret ubiquitin code.

Ubiquitin is a small protein that can be linked to other cellular proteins, thereby controlling and modulating their functions. The attachment occurs in many...

Im Focus: Perovskite edges can be tuned for optoelectronic performance

Layered 2D material improves efficiency for solar cells and LEDs

In the eternal search for next generation high-efficiency solar cells and LEDs, scientists at Los Alamos National Laboratory and their partners are creating...

Im Focus: Polymer-coated silicon nanosheets as alternative to graphene: A perfect team for nanoelectronics

Silicon nanosheets are thin, two-dimensional layers with exceptional optoelectronic properties very similar to those of graphene. Albeit, the nanosheets are less stable. Now researchers at the Technical University of Munich (TUM) have, for the first time ever, produced a composite material combining silicon nanosheets and a polymer that is both UV-resistant and easy to process. This brings the scientists a significant step closer to industrial applications like flexible displays and photosensors.

Silicon nanosheets are thin, two-dimensional layers with exceptional optoelectronic properties very similar to those of graphene. Albeit, the nanosheets are...

Im Focus: Researchers Imitate Molecular Crowding in Cells

Enzymes behave differently in a test tube compared with the molecular scrum of a living cell. Chemists from the University of Basel have now been able to simulate these confined natural conditions in artificial vesicles for the first time. As reported in the academic journal Small, the results are offering better insight into the development of nanoreactors and artificial organelles.

Enzymes behave differently in a test tube compared with the molecular scrum of a living cell. Chemists from the University of Basel have now been able to...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

International Land Use Symposium ILUS 2017: Call for Abstracts and Registration open

20.03.2017 | Event News

CONNECT 2017: International congress on connective tissue

14.03.2017 | Event News

ICTM Conference: Turbine Construction between Big Data and Additive Manufacturing

07.03.2017 | Event News

 
Latest News

When Air is in Short Supply - Shedding light on plant stress reactions when oxygen runs short

23.03.2017 | Life Sciences

Researchers use light to remotely control curvature of plastics

23.03.2017 | Power and Electrical Engineering

Sea ice extent sinks to record lows at both poles

23.03.2017 | Earth Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>