Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Closing in on the Phenomenon of Superconductivity With a Two-dimensional Atomic Gas

09.06.2015

Transition into superfluid phase: Heidelberg physicists characterise an exotic quantum superfluid

Using an exotic quantum superfluid that originates in a two-dimensional atomic gas, researchers from Heidelberg University are closing in on the phenomenon of superconductivity. The team headed by Prof. Dr. Selim Jochim of the Institute for Physics is using this special gas as a model system to more easily study the largely unknown mechanism of the superfluid phase transition in 2D structures.


Experimental setup to generate a two-dimensional ultracold quantum gas

In the background is the vacuum chamber in which the researchers prepared the quantum superfluid. The mirrors and lenses needed to create the laser trap are seen in the foreground. This apparatus allows the physicists to generate a two-dimensional ultracold gas every 15 seconds and then measure its properties. Photo: Martin Ries


Atomic gas in a magneto-optical trap

The luminous red cloud suspended in the centre of the vacuum chamber consists of approximately one billion lithium atoms. Their temperature is about 500 microkelvins, or about 500 millionths of a degree above absolute zero at negative 273.15 degrees Celsius. The atoms are captured by laser beams, cooled, and used as the foundation for all the experiments conducted by Prof. Dr. Selim Jochim’s team. Photo: Martin Ries

The researchers hope to gain new insight into the so-called room-temperature superconductor, a hypothetical material that does not require cooling to achieve lossless conduction of electricity. The research results were published in the journal “Physical Review Letters”.

Two of the most impressive phenomena that exhibit quantum mechanical behaviour in the “normal” world are superfluidity and its by-product, superconductivity. In physics, superfluidity is a state of matter in which a fluid loses all internal resistance.

Superconductivity results when the electrons in a material behave like a superfluid liquid. They flow without encountering any friction, and the electrical resistance drops to zero. This state occurs only below a certain critical temperature, which is different for every superconductor.

This behaviour is well understood in the conventional superconductor, in which the electrons move in three dimensions. But the problem is that the superconducting state can only be achieved at very cold temperatures well under negative 200 degrees Celsius. The necessary extensive cooling hampers a technological application, according to physicist Dr. Martin Ries.

“For several years, it has been possible to produce high-temperature superconductors. Their critical temperature is significantly higher, but unfortunately still just under negative 130 degrees Celsius. Additionally, we only have a partial understanding of the way they work, making it difficult to develop better superconductors of this kind,” says the scientist, who is a member of Prof. Jochim’s research team.

As Dr. Ries explains, science assumes that electrons can only move in two dimensions in high-temperature superconductors. So the Heidelberg physicists focused their research into superfluidity and superconductivity on two-dimensional structures. The superfluid transition is quite different between 2D and 3D structures, and the two-dimensional transition mechanism remains largely a mystery that is difficult to pin down theoretically.

Although the so-called BKT theory did address it in the 1970s, it is only valid if the forces between the electrons are weak. “But what exactly happens with stronger forces is not known, and that is precisely the scenario of major significance,” says Dr. Ries.

Jochim’s team of physicists has now succeeded in building a simple model system to perform a quantum simulation of the superfluid phase transition in 2D structures. They are using a two-dimensional ultracold gas captured in a laser trap. “We are able to create a ‘clean’ system that is easier to understand and in which the quantum mechanical behaviour of the particles resembles that of the electrons in two-dimensional structures,” reports Dr. Ries.

It actually allowed the researchers to observe the transition into the superfluid phase at low temperatures and measure the critical temperature for any strength of interparticle forces. “This gives us the ability to more easily test the various theories for 2D superfluidity in the future,” explains Prof. Jochim, whose team is currently investigating the correlations in the superfluid phase. “Over the long term, we hope to gain a better understanding of high-temperature superconductivity that could lead to the development of a room-temperature superconductor at some point in the future.”

This research was conducted by a cooperation of experimental and theoretical physicists at Heidelberg University's Center for Quantum Dynamics. For their article published in the “Physical Review Letters”, the authors received the coveted “Editors’ Suggestion” distinction.

Original publication:
M.G. Ries, A.N. Wenz, G. Zürn, L. Bayha, I. Boettcher, D. Kedar, P.A. Murthy, M. Neidig, T. Lompe and S. Jochim: Observation of Pair Condensation in the Quasi-2D BEC-BCS Crossover. Physical Review Letters 114, 230401 (8 June 2015), doi: 10.1103/PhysRevLett.114.230401

Contact:
Dr. Martin Ries
Institute for Physics
Phone: +49 6221 54-19484
martin.ries@physi.uni-heidelberg.de

Communications and Marketing
Press Office, phone: +49 6221 54-2311
presse@rektorat.uni-heidelberg.de

Weitere Informationen:

h

Marietta Fuhrmann-Koch | idw - Informationsdienst Wissenschaft

More articles from Physics and Astronomy:

nachricht Witnessing turbulent motion in the atmosphere of a distant star
23.08.2017 | Max-Planck-Institut für Radioastronomie

nachricht Heating quantum matter: A novel view on topology
22.08.2017 | Université libre de Bruxelles

All articles from Physics and Astronomy >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Fizzy soda water could be key to clean manufacture of flat wonder material: Graphene

Whether you call it effervescent, fizzy, or sparkling, carbonated water is making a comeback as a beverage. Aside from quenching thirst, researchers at the University of Illinois at Urbana-Champaign have discovered a new use for these "bubbly" concoctions that will have major impact on the manufacturer of the world's thinnest, flattest, and one most useful materials -- graphene.

As graphene's popularity grows as an advanced "wonder" material, the speed and quality at which it can be manufactured will be paramount. With that in mind,...

Im Focus: Exotic quantum states made from light: Physicists create optical “wells” for a super-photon

Physicists at the University of Bonn have managed to create optical hollows and more complex patterns into which the light of a Bose-Einstein condensate flows. The creation of such highly low-loss structures for light is a prerequisite for complex light circuits, such as for quantum information processing for a new generation of computers. The researchers are now presenting their results in the journal Nature Photonics.

Light particles (photons) occur as tiny, indivisible portions. Many thousands of these light portions can be merged to form a single super-photon if they are...

Im Focus: Circular RNA linked to brain function

For the first time, scientists have shown that circular RNA is linked to brain function. When a RNA molecule called Cdr1as was deleted from the genome of mice, the animals had problems filtering out unnecessary information – like patients suffering from neuropsychiatric disorders.

While hundreds of circular RNAs (circRNAs) are abundant in mammalian brains, one big question has remained unanswered: What are they actually good for? In the...

Im Focus: RAVAN CubeSat measures Earth's outgoing energy

An experimental small satellite has successfully collected and delivered data on a key measurement for predicting changes in Earth's climate.

The Radiometer Assessment using Vertically Aligned Nanotubes (RAVAN) CubeSat was launched into low-Earth orbit on Nov. 11, 2016, in order to test new...

Im Focus: Scientists shine new light on the “other high temperature superconductor”

A study led by scientists of the Max Planck Institute for the Structure and Dynamics of Matter (MPSD) at the Center for Free-Electron Laser Science in Hamburg presents evidence of the coexistence of superconductivity and “charge-density-waves” in compounds of the poorly-studied family of bismuthates. This observation opens up new perspectives for a deeper understanding of the phenomenon of high-temperature superconductivity, a topic which is at the core of condensed matter research since more than 30 years. The paper by Nicoletti et al has been published in the PNAS.

Since the beginning of the 20th century, superconductivity had been observed in some metals at temperatures only a few degrees above the absolute zero (minus...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Call for Papers – ICNFT 2018, 5th International Conference on New Forming Technology

16.08.2017 | Event News

Sustainability is the business model of tomorrow

04.08.2017 | Event News

Clash of Realities 2017: Registration now open. International Conference at TH Köln

26.07.2017 | Event News

 
Latest News

What the world's tiniest 'monster truck' reveals

23.08.2017 | Life Sciences

Treating arthritis with algae

23.08.2017 | Life Sciences

Witnessing turbulent motion in the atmosphere of a distant star

23.08.2017 | Physics and Astronomy

VideoLinks
B2B-VideoLinks
More VideoLinks >>>