Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:


Chasing elusive elementary particles


Erlangen astroparticle physicists collaborate with European KM3NeT-neutrino telescope

In the early morning of December 3, 2015 scientists and engineers from nine European countries started the installation of KM3NeT, the largest detector of neutrinos in the Northern Hemisphere. Located in the depths of the Mediterranean Sea, the telescope will study the fundamental properties of neutrinos and map the high-energy cosmic neutrinos emanating from extreme cataclysmic events in the universe.

A building block of KM3NeT comprises 115 detections strings

The neutrino detection string wound around the spherical deployment frame prior to installation

Prof. Dr. Gisela Anton, Prof. Dr. Uli Katz and their team from the Erlangen Center for Astroparticle Physics (ECAP) at Friedrich-Alexander-Universität Erlangen-Nürnberg (FAU) contribute to KM3NeT with simulation and physics sensitivity studies and the production of sensor modules, are responsible for the software development.

Neutrinos are the most elusive of elementary particles and their detection requires the instrumentation of enormous volumes. The KM3NeT neutrino telescope will consist of a network of several hundred vertical detection strings, anchored to the seabed, occupying more than a cubic kilometre volume of seawater.

Each string hosts 18 light sensor modules equally spaced along its length. In the darkness of the abyss, the sensor modules register the faint flashes of light that signal the interaction of neutrinos with the seawater surrounding the telescope.

On board the Ambrosius Tide deployment boat, the first string – wound, like a ball of wool, around a spherical frame – arrived at the location of the KM3NeT-Italy site south of Sicily. It was anchored to the seabed at a depth of 3500 m and connected to a junction box, already present on the seafloor, using a remotely operated submersible controlled from the boat. The junction box is connected by a 100 km cable to the shore station located in Portopalo di Capo Passero in the south of Sicily.

Marco Circella, the technical coordinator of KM3NeT explains: “The large depth of sea water shields the telescope from particles created by cosmic rays in the atmosphere above the telescope. Constructing such a large infrastructure at these depths is a tremendous technical challenge. Just making the underwater connections requires custom-designed electrical and fibre optics connectors. The crew of the Ambrosius Tide are experts in performing such delicate submarine operations.”

After verification of the quality of the power and fibre optic connections to the shore station, the go ahead was given to trigger the unfurling of the string to its full 700 m height. During this process, the deployment frame is released from its anchor and floats towards the surface while slowly rotating. In doing so, the string unwinds from the spherical frame, eventually leaving behind a vertical string. The string was then powered on from the shore station and the first data from the sensor modules started streaming to shore.

Prof. Dr. Uli Katz, chair of astroparticle physics at Erlangen University and KM3NeT physics and software director: “It is an overwhelming success that the first string is fully functional and delivers high-quality data immediately after switch-on. Within hours we were able to reconstruct the first down-going atmospheric muons. We are excitedly looking forward to the data from the growing detector.” The Erlangen Center for Astroparticle Physics (ECAP) of the Friedrich-Alexander-Universität of Erlangen-Nürnberg contributes to KM3NeT with simulation and physics sensitivity studies and the production of sensor modules, and carries responsibility for the software development.

Rosanna Cocimano who coordinates the high-voltage power network for KM3NeT, remarks: “An electro-optical network of cables distributes the high-voltage power from the shore station to the sensor modules in the deep sea. The light signals measured by the sensor modules are returned over optical fibres back to the shore station.”

The successful acquisition of data from the abyss with the pioneering technology developed by the KM3NeT Collaboration is a major milestone for the project. It represents the culmination of ten years of research and development by the many research institutes comprising the international Collaboration.

Maarten de Jong, spokesperson and director of KM3NeT, said: “This important step in the verification of the design and the technology will allow the KM3NeT Collaboration to proceed with confidence toward the mass production of detection strings and their installation at the sites in the Mediterranean Sea off-shore from Italy and France. A new era in neutrino astronomy has begun.”

Partner institutes in the KM3NeT Collaboration include:
France: Centre de Physique des Particules de Marseille (CPPM), AstroParticule et Cosmologie (APC, Paris), Institute Pluridisciplinaire Hubert Curien (IPHC, Strasbourg),
Germany: Erlangen Centre for Astroparticle Physics (ECAP) and Dr. Karl Remeis Observatory Bamberg (both FAU), Kepler Centre for Astro and Particle Physics (Tübingen), Julius Maximilian University of Würzburg,
Greece: National Centre for Scientific Research “Demokritos” (NCSR-D, Athens), National and Kapodistrian University of Athens, Hellenic Open University (Patras), Aristotle University of Thessaloniki, Technological Education Institute of Piraeus
Italy: Laboratori Nazionali del Sud (INFN/LNS, Catania), University of Bari, University of Bologna, University of Catania, University of Genova, University of Napoli, University of Pisa, University La Sapienza (Rome), University of Salerno, Napoli Gruppo Collegeato di Salerno, Laboratori Nazionali di Frascati (INFN/LNF), Istituto Nazionali di Geofisica e Vulcanologia (INGV, Rome)
Morocco: Mohammed First University (Oujda)
The Netherlands: National institute for subatomic physics (Nikhef, Amsterdam), Universiteit van Amsterdam, Universiteit van Leiden, Universiteit van Groningen (RUG/KVI), Nationaal Instituut voor Onderzoek der Zee (NIOZ, Texel), TNO
Poland: National Centre for Nuclear Research (NCBJ, Warsaw)
Spain: Instituto de Fisica Corpuscular (IFIC/CSIC, Valencia), Polytechnical University Valencia (UPV), Technical University of Catalonia (UPC, Barcelona)

In addition, other institutes are involved as observers.

Prof. Dr. Uli Katz
KM3NeT physics and software director
Erlangen Centre for Astroparticle Physics, FAU
Tel: +4991318527072

Weitere Informationen:

Dr. Susanne Langer | idw - Informationsdienst Wissenschaft
Further information:

More articles from Physics and Astronomy:

nachricht DGIST develops 20 times faster biosensor
24.04.2017 | DGIST (Daegu Gyeongbuk Institute of Science and Technology)

nachricht New quantum liquid crystals may play role in future of computers
21.04.2017 | California Institute of Technology

All articles from Physics and Astronomy >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Making lightweight construction suitable for series production

More and more automobile companies are focusing on body parts made of carbon fiber reinforced plastics (CFRP). However, manufacturing and repair costs must be further reduced in order to make CFRP more economical in use. Together with the Volkswagen AG and five other partners in the project HolQueSt 3D, the Laser Zentrum Hannover e.V. (LZH) has developed laser processes for the automatic trimming, drilling and repair of three-dimensional components.

Automated manufacturing processes are the basis for ultimately establishing the series production of CFRP components. In the project HolQueSt 3D, the LZH has...

Im Focus: Wonder material? Novel nanotube structure strengthens thin films for flexible electronics

Reflecting the structure of composites found in nature and the ancient world, researchers at the University of Illinois at Urbana-Champaign have synthesized thin carbon nanotube (CNT) textiles that exhibit both high electrical conductivity and a level of toughness that is about fifty times higher than copper films, currently used in electronics.

"The structural robustness of thin metal films has significant importance for the reliable operation of smart skin and flexible electronics including...

Im Focus: Deep inside Galaxy M87

The nearby, giant radio galaxy M87 hosts a supermassive black hole (BH) and is well-known for its bright jet dominating the spectrum over ten orders of magnitude in frequency. Due to its proximity, jet prominence, and the large black hole mass, M87 is the best laboratory for investigating the formation, acceleration, and collimation of relativistic jets. A research team led by Silke Britzen from the Max Planck Institute for Radio Astronomy in Bonn, Germany, has found strong indication for turbulent processes connecting the accretion disk and the jet of that galaxy providing insights into the longstanding problem of the origin of astrophysical jets.

Supermassive black holes form some of the most enigmatic phenomena in astrophysics. Their enormous energy output is supposed to be generated by the...

Im Focus: A Quantum Low Pass for Photons

Physicists in Garching observe novel quantum effect that limits the number of emitted photons.

The probability to find a certain number of photons inside a laser pulse usually corresponds to a classical distribution of independent events, the so-called...

Im Focus: Microprocessors based on a layer of just three atoms

Microprocessors based on atomically thin materials hold the promise of the evolution of traditional processors as well as new applications in the field of flexible electronics. Now, a TU Wien research team led by Thomas Müller has made a breakthrough in this field as part of an ongoing research project.

Two-dimensional materials, or 2D materials for short, are extremely versatile, although – or often more precisely because – they are made up of just one or a...

All Focus news of the innovation-report >>>



Event News

Expert meeting “Health Business Connect” will connect international medical technology companies

20.04.2017 | Event News

Wenn der Computer das Gehirn austrickst

18.04.2017 | Event News

7th International Conference on Crystalline Silicon Photovoltaics in Freiburg on April 3-5, 2017

03.04.2017 | Event News

Latest News

Early organic carbon got deep burial in mantle

25.04.2017 | Earth Sciences

A room with a view - or how cultural differences matter in room size perception

25.04.2017 | Life Sciences

Warm winds: New insight into what weakens Antarctic ice shelves

25.04.2017 | Earth Sciences

More VideoLinks >>>