Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Causing Collapse

19.03.2013
Weizmann Institute researchers suggest one can affect an atom’s spin by adjusting the way it is measured

One of the most basic laws of quantum mechanics is that a system can be in more than one state – it can exist in multiple realities – at once. This phenomenon, known as the superposition principle, exists only so long as the system is not observed or measured in any way. As soon as such a system is measured, its superposition collapses into a single state. Thus, we, who are constantly observing and measuring, experience the world around us as existing in a single reality.


All spin directions (represented by the spheres) collapse on one or the opposite direction depending on the measured photon polarization

The principle of superposition was first demonstrated in 1922 by Otto Stern and Walther Gerlach, who observed the phenomenon in the spin of silver atoms. Spin is the intrinsic magnet in quantum particles, and when a particle’s spin is in superposition, it points in more than one direction at the same time. (Instead of the north and south of magnets, these are referred to as up and down.)

Dr. Roee Ozeri and research students Yinnon Glickman, Shlomi Kotler and Nitzan Akerman, of the Physics of Complex Systems Department studied how the spin of a single atom collapsed from superposition to one state when it was observed with light. They “measured” the atom by shining laser light on it. Just as our eyes observe the world by absorbing the photons – light particles – scattered in our direction by objects, the researchers observed the process of spin collapse in the atoms by measuring the scattered photons. In results that appeared recently in Science, they showed that the direction that a photon takes as it leaves the atom is the direction that the spin adopts when superposition collapses.

Next, the team measured the polarization of the emitted photon and found that the observed polarization determines the effect of measurement on the spin. This suggests that an observer can influence the collapse of superposition just by adjusting the orientation of his photon-polarization measurement apparatus.

The reason for this “action-at-a-distance” is that the spins of the measured atoms and the emitted photons were entangled. That is, even after they were separated, a measurement of one of them instantaneously affected the other.

The experiment is an important step in understanding the measurement process in quantum systems.

Dr. Roee Ozeri’s research is supported by the Crown Photonics Center; David Dickstein, France; Martin Kushner Schnur, Mexico; the Wolfson Family Charitable Trust; and the Yeda-Sela Center for Basic Research.

Yivsam Azgad | EurekAlert!
Further information:
http://www.weizmann.ac.il

More articles from Physics and Astronomy:

nachricht A 100-year-old physics problem has been solved at EPFL
23.06.2017 | Ecole Polytechnique Fédérale de Lausanne

nachricht Quantum thermometer or optical refrigerator?
23.06.2017 | National Institute of Standards and Technology (NIST)

All articles from Physics and Astronomy >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Can we see monkeys from space? Emerging technologies to map biodiversity

An international team of scientists has proposed a new multi-disciplinary approach in which an array of new technologies will allow us to map biodiversity and the risks that wildlife is facing at the scale of whole landscapes. The findings are published in Nature Ecology and Evolution. This international research is led by the Kunming Institute of Zoology from China, University of East Anglia, University of Leicester and the Leibniz Institute for Zoo and Wildlife Research.

Using a combination of satellite and ground data, the team proposes that it is now possible to map biodiversity with an accuracy that has not been previously...

Im Focus: Climate satellite: Tracking methane with robust laser technology

Heatwaves in the Arctic, longer periods of vegetation in Europe, severe floods in West Africa – starting in 2021, scientists want to explore the emissions of the greenhouse gas methane with the German-French satellite MERLIN. This is made possible by a new robust laser system of the Fraunhofer Institute for Laser Technology ILT in Aachen, which achieves unprecedented measurement accuracy.

Methane is primarily the result of the decomposition of organic matter. The gas has a 25 times greater warming potential than carbon dioxide, but is not as...

Im Focus: How protons move through a fuel cell

Hydrogen is regarded as the energy source of the future: It is produced with solar power and can be used to generate heat and electricity in fuel cells. Empa researchers have now succeeded in decoding the movement of hydrogen ions in crystals – a key step towards more efficient energy conversion in the hydrogen industry of tomorrow.

As charge carriers, electrons and ions play the leading role in electrochemical energy storage devices and converters such as batteries and fuel cells. Proton...

Im Focus: A unique data centre for cosmological simulations

Scientists from the Excellence Cluster Universe at the Ludwig-Maximilians-Universität Munich have establised "Cosmowebportal", a unique data centre for cosmological simulations located at the Leibniz Supercomputing Centre (LRZ) of the Bavarian Academy of Sciences. The complete results of a series of large hydrodynamical cosmological simulations are available, with data volumes typically exceeding several hundred terabytes. Scientists worldwide can interactively explore these complex simulations via a web interface and directly access the results.

With current telescopes, scientists can observe our Universe’s galaxies and galaxy clusters and their distribution along an invisible cosmic web. From the...

Im Focus: Scientists develop molecular thermometer for contactless measurement using infrared light

Temperature measurements possible even on the smallest scale / Molecular ruby for use in material sciences, biology, and medicine

Chemists at Johannes Gutenberg University Mainz (JGU) in cooperation with researchers of the German Federal Institute for Materials Research and Testing (BAM)...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Plants are networkers

19.06.2017 | Event News

Digital Survival Training for Executives

13.06.2017 | Event News

Global Learning Council Summit 2017

13.06.2017 | Event News

 
Latest News

Quantum thermometer or optical refrigerator?

23.06.2017 | Physics and Astronomy

A 100-year-old physics problem has been solved at EPFL

23.06.2017 | Physics and Astronomy

Equipping form with function

23.06.2017 | Information Technology

VideoLinks
B2B-VideoLinks
More VideoLinks >>>