Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Cat's eyes: Designing the perfect mixer

30.10.2013
As any amateur baker knows, proper mixing is crucial to a perfect pastry. Mix too little and ingredients will not be evenly distributed; beat instead of fold, and a soufflé will fall flat.

Mixing strategies are even more critical for industrial products, where every batch that is manufactured must meet the same exacting standards and yet, to manage costs, be created in the least amount of time.


This is an instantaneous illustration of the lamination observed during a cat's eyes flip mixing sequence.

Credit: L.Rossi/CEA

In a new paper published in the journal Physics of Fluids, fluid mechanics expert Lionel Rossi, a researcher at the French Alternative Energies and Atomic Energy Commission (CEA), and his colleagues from Imperial College London describe a new recipe for industrial mixing with the potential to optimize mixers.

The process uses magnets to generate synchronized flows of jets that move in opposite directions and whose positions are slightly offset from each other. By controlling the timing of the jets and their strength and position, the researchers created a promising mixing sequence called a "cat's eyes flip flow," named because the resulting pattern, as visualized with colored dyes added to the solution, resembles the delicate almond shape of a cat's eye. They studied the flows created by this sequence and compared them to other patterns, and found that the cat's eyes flip flows were most efficient at mixing solutions.

"The new sequence is both robust and fast, and its relative simplicity makes it transferable to mixing devices at all scales," Rossi said. At very small scales, he noted, the sequence should help reduce mixing times and possibly even the space required for mixing. This would be of interest for lab-on-a-chip applications "that require numerous manipulations in a minimum of time and space," Rossi said.

At larger scales, he continued, "the sequence should increase performance while reducing energy consumption," for example by reducing the stirring of saturated regions, making the process more environmentally friendly.

Next, the researchers plan to develop tailored mixing strategies applicable to almost any mixing need, by using different sequences of synchronized flows as building blocks.

The article, "Lamination, stretching and mixing in cat's eyes flip sequences with varying periods" by Lionel Rossi, Denis Doorly and Dimitri Kustrin appears in the journal Physics of Fluids. See: http://dx.doi.org/10.1063/1.4812798

ABOUT THE JOURNAL

Physics of Fluids is devoted to the publication of original theoretical, computational, and experimental contributions to the dynamics of gases, liquids, and complex or multiphase fluids. See: http://pof.aip.org

Jason Socrates Bardi | EurekAlert!
Further information:
http://www.aip.org

More articles from Physics and Astronomy:

nachricht Climate cycles may explain how running water carved Mars' surface features
02.12.2016 | Penn State

nachricht What do Netflix, Google and planetary systems have in common?
02.12.2016 | University of Toronto

All articles from Physics and Astronomy >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Novel silicon etching technique crafts 3-D gradient refractive index micro-optics

A multi-institutional research collaboration has created a novel approach for fabricating three-dimensional micro-optics through the shape-defined formation of porous silicon (PSi), with broad impacts in integrated optoelectronics, imaging, and photovoltaics.

Working with colleagues at Stanford and The Dow Chemical Company, researchers at the University of Illinois at Urbana-Champaign fabricated 3-D birefringent...

Im Focus: Quantum Particles Form Droplets

In experiments with magnetic atoms conducted at extremely low temperatures, scientists have demonstrated a unique phase of matter: The atoms form a new type of quantum liquid or quantum droplet state. These so called quantum droplets may preserve their form in absence of external confinement because of quantum effects. The joint team of experimental physicists from Innsbruck and theoretical physicists from Hannover report on their findings in the journal Physical Review X.

“Our Quantum droplets are in the gas phase but they still drop like a rock,” explains experimental physicist Francesca Ferlaino when talking about the...

Im Focus: MADMAX: Max Planck Institute for Physics takes up axion research

The Max Planck Institute for Physics (MPP) is opening up a new research field. A workshop from November 21 - 22, 2016 will mark the start of activities for an innovative axion experiment. Axions are still only purely hypothetical particles. Their detection could solve two fundamental problems in particle physics: What dark matter consists of and why it has not yet been possible to directly observe a CP violation for the strong interaction.

The “MADMAX” project is the MPP’s commitment to axion research. Axions are so far only a theoretical prediction and are difficult to detect: on the one hand,...

Im Focus: Molecules change shape when wet

Broadband rotational spectroscopy unravels structural reshaping of isolated molecules in the gas phase to accommodate water

In two recent publications in the Journal of Chemical Physics and in the Journal of Physical Chemistry Letters, researchers around Melanie Schnell from the Max...

Im Focus: Fraunhofer ISE Develops Highly Compact, High Frequency DC/DC Converter for Aviation

The efficiency of power electronic systems is not solely dependent on electrical efficiency but also on weight, for example, in mobile systems. When the weight of relevant components and devices in airplanes, for instance, is reduced, fuel savings can be achieved and correspondingly greenhouse gas emissions decreased. New materials and components based on gallium nitride (GaN) can help to reduce weight and increase the efficiency. With these new materials, power electronic switches can be operated at higher switching frequency, resulting in higher power density and lower material costs.

Researchers at the Fraunhofer Institute for Solar Energy Systems ISE together with partners have investigated how these materials can be used to make power...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

ICTM Conference 2017: Production technology for turbomachine manufacturing of the future

16.11.2016 | Event News

Innovation Day Laser Technology – Laser Additive Manufacturing

01.11.2016 | Event News

#IC2S2: When Social Science meets Computer Science - GESIS will host the IC2S2 conference 2017

14.10.2016 | Event News

 
Latest News

UTSA study describes new minimally invasive device to treat cancer and other illnesses

02.12.2016 | Medical Engineering

Plasma-zapping process could yield trans fat-free soybean oil product

02.12.2016 | Agricultural and Forestry Science

What do Netflix, Google and planetary systems have in common?

02.12.2016 | Physics and Astronomy

VideoLinks
B2B-VideoLinks
More VideoLinks >>>