Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Cat's eyes: Designing the perfect mixer

30.10.2013
As any amateur baker knows, proper mixing is crucial to a perfect pastry. Mix too little and ingredients will not be evenly distributed; beat instead of fold, and a soufflé will fall flat.

Mixing strategies are even more critical for industrial products, where every batch that is manufactured must meet the same exacting standards and yet, to manage costs, be created in the least amount of time.


This is an instantaneous illustration of the lamination observed during a cat's eyes flip mixing sequence.

Credit: L.Rossi/CEA

In a new paper published in the journal Physics of Fluids, fluid mechanics expert Lionel Rossi, a researcher at the French Alternative Energies and Atomic Energy Commission (CEA), and his colleagues from Imperial College London describe a new recipe for industrial mixing with the potential to optimize mixers.

The process uses magnets to generate synchronized flows of jets that move in opposite directions and whose positions are slightly offset from each other. By controlling the timing of the jets and their strength and position, the researchers created a promising mixing sequence called a "cat's eyes flip flow," named because the resulting pattern, as visualized with colored dyes added to the solution, resembles the delicate almond shape of a cat's eye. They studied the flows created by this sequence and compared them to other patterns, and found that the cat's eyes flip flows were most efficient at mixing solutions.

"The new sequence is both robust and fast, and its relative simplicity makes it transferable to mixing devices at all scales," Rossi said. At very small scales, he noted, the sequence should help reduce mixing times and possibly even the space required for mixing. This would be of interest for lab-on-a-chip applications "that require numerous manipulations in a minimum of time and space," Rossi said.

At larger scales, he continued, "the sequence should increase performance while reducing energy consumption," for example by reducing the stirring of saturated regions, making the process more environmentally friendly.

Next, the researchers plan to develop tailored mixing strategies applicable to almost any mixing need, by using different sequences of synchronized flows as building blocks.

The article, "Lamination, stretching and mixing in cat's eyes flip sequences with varying periods" by Lionel Rossi, Denis Doorly and Dimitri Kustrin appears in the journal Physics of Fluids. See: http://dx.doi.org/10.1063/1.4812798

ABOUT THE JOURNAL

Physics of Fluids is devoted to the publication of original theoretical, computational, and experimental contributions to the dynamics of gases, liquids, and complex or multiphase fluids. See: http://pof.aip.org

Jason Socrates Bardi | EurekAlert!
Further information:
http://www.aip.org

More articles from Physics and Astronomy:

nachricht Breakthrough with a chain of gold atoms
17.02.2017 | Universität Konstanz

nachricht New functional principle to generate the „third harmonic“
16.02.2017 | Laser Zentrum Hannover e.V.

All articles from Physics and Astronomy >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Breakthrough with a chain of gold atoms

In the field of nanoscience, an international team of physicists with participants from Konstanz has achieved a breakthrough in understanding heat transport

In the field of nanoscience, an international team of physicists with participants from Konstanz has achieved a breakthrough in understanding heat transport

Im Focus: DNA repair: a new letter in the cell alphabet

Results reveal how discoveries may be hidden in scientific “blind spots”

Cells need to repair damaged DNA in our genes to prevent the development of cancer and other diseases. Our cells therefore activate and send “repair-proteins”...

Im Focus: Dresdner scientists print tomorrow’s world

The Fraunhofer IWS Dresden and Technische Universität Dresden inaugurated their jointly operated Center for Additive Manufacturing Dresden (AMCD) with a festive ceremony on February 7, 2017. Scientists from various disciplines perform research on materials, additive manufacturing processes and innovative technologies, which build up components in a layer by layer process. This technology opens up new horizons for component design and combinations of functions. For example during fabrication, electrical conductors and sensors are already able to be additively manufactured into components. They provide information about stress conditions of a product during operation.

The 3D-printing technology, or additive manufacturing as it is often called, has long made the step out of scientific research laboratories into industrial...

Im Focus: Mimicking nature's cellular architectures via 3-D printing

Research offers new level of control over the structure of 3-D printed materials

Nature does amazing things with limited design materials. Grass, for example, can support its own weight, resist strong wind loads, and recover after being...

Im Focus: Three Magnetic States for Each Hole

Nanometer-scale magnetic perforated grids could create new possibilities for computing. Together with international colleagues, scientists from the Helmholtz Zentrum Dresden-Rossendorf (HZDR) have shown how a cobalt grid can be reliably programmed at room temperature. In addition they discovered that for every hole ("antidot") three magnetic states can be configured. The results have been published in the journal "Scientific Reports".

Physicist Dr. Rantej Bali from the HZDR, together with scientists from Singapore and Australia, designed a special grid structure in a thin layer of cobalt in...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Booth and panel discussion – The Lindau Nobel Laureate Meetings at the AAAS 2017 Annual Meeting

13.02.2017 | Event News

Complex Loading versus Hidden Reserves

10.02.2017 | Event News

International Conference on Crystal Growth in Freiburg

09.02.2017 | Event News

 
Latest News

Biocompatible 3-D tracking system has potential to improve robot-assisted surgery

17.02.2017 | Medical Engineering

Real-time MRI analysis powered by supercomputers

17.02.2017 | Medical Engineering

Antibiotic effective against drug-resistant bacteria in pediatric skin infections

17.02.2017 | Health and Medicine

VideoLinks
B2B-VideoLinks
More VideoLinks >>>