Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Bursting 'bubbles' the origin of galactic gas clouds

01.06.2010
Like bubbles bursting on the surface of a glass of champagne, ‘bubbles’ in our Galaxy burst and leave flecks of material in the form of clouds of hydrogen gas, researchers using CSIRO’s Parkes telescope have found.

Their study explains the origin of these clouds for the first time.

Swinburne University PhD student Alyson Ford (now at the University of Michigan) and her supervisors; Dr Naomi McClure-Griffiths (CSIRO Astronomy and Space Science) and Felix Lockman (US National Radio Astronomy Observatory), have made the first detailed observations of ‘halo’ gas clouds in our Galaxy.

Just as Earth has an atmosphere, the main starry disk of our Galaxy is surrounded by a thinner halo of stars, gas and ‘dark matter’.

The halo clouds skim the surface of our Galaxy, sitting 400 to 10 000 light-years outside the Galactic disk. They are big: an average-sized cloud contains hydrogen gas 700 times the mass of the Sun and is about 200 light-years across.

“We’re studying the clouds to understand what role they play in recycling material between the disk and halo,” Dr McClure-Griffiths said.

“The clouds can fall back down into the main body of the Galaxy, returning gas to it.”

The researchers studied about 650 clouds and found striking differences between them in different areas of the Galaxy. One part of the Galaxy had three times as many clouds as another next to it, and the clouds were twice as thick.

The region with lots of thick clouds is where lots of stars form, while the region with fewer clouds also forms fewer stars.

"We’re studying the clouds to understand what role they play in recycling material between the disk and halo,"

Dr McClure-Griffiths said.But the halo clouds aren’t found exactly where stars are forming right now. Instead, they seem to be linked to earlier star formation.

Massive stars grow old quickly. After a few million years they shed material into space as a ’wind‘ and then explode.

This violence creates bubbles in the gas in space, like the holes in a Swiss cheese.

“Stellar winds and explosions sweep up gas from the Galactic disk into the lower halo.

“We’ve found this churned-up gas is ‘spritzing’ the surface of the Galactic disk in the form of halo clouds.”

A star-forming region is active for less than a million years, but a super-bubble in the Galaxy takes 20 or 30 million years to form.

“Just as yeast takes a while to make wine bubbly, stars take a while to make the Galaxy bubbly,” Dr McClure-Griffiths said.

The halo clouds are distinct from a larger population of ‘high-velocity clouds’ that also sail outside the galaxy. The halo clouds move in tandem with the rotating Galaxy, while the high-velocity clouds scud along much faster.

This study is the first to accurately locate the halo clouds in relation to the main body of the Galaxy. Its findings were presented overnight at a news conference at a meeting of the American Astronomical Society in Miami, Florida.

Media please note:

Dr McClure-Griffiths will be available to respond directly to media enquiries from 7 am to 8:20 am. To organise interviews with Dr McClure-Griffiths after 8:20 am, contact Ms Helen Sim.

Helen Sim | EurekAlert!
Further information:
http://www.csiro.au

Further reports about: Astronomy Galactic Galaxy dark matter galactic gas clouds halo of stars

More articles from Physics and Astronomy:

nachricht Climate cycles may explain how running water carved Mars' surface features
02.12.2016 | Penn State

nachricht What do Netflix, Google and planetary systems have in common?
02.12.2016 | University of Toronto

All articles from Physics and Astronomy >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Novel silicon etching technique crafts 3-D gradient refractive index micro-optics

A multi-institutional research collaboration has created a novel approach for fabricating three-dimensional micro-optics through the shape-defined formation of porous silicon (PSi), with broad impacts in integrated optoelectronics, imaging, and photovoltaics.

Working with colleagues at Stanford and The Dow Chemical Company, researchers at the University of Illinois at Urbana-Champaign fabricated 3-D birefringent...

Im Focus: Quantum Particles Form Droplets

In experiments with magnetic atoms conducted at extremely low temperatures, scientists have demonstrated a unique phase of matter: The atoms form a new type of quantum liquid or quantum droplet state. These so called quantum droplets may preserve their form in absence of external confinement because of quantum effects. The joint team of experimental physicists from Innsbruck and theoretical physicists from Hannover report on their findings in the journal Physical Review X.

“Our Quantum droplets are in the gas phase but they still drop like a rock,” explains experimental physicist Francesca Ferlaino when talking about the...

Im Focus: MADMAX: Max Planck Institute for Physics takes up axion research

The Max Planck Institute for Physics (MPP) is opening up a new research field. A workshop from November 21 - 22, 2016 will mark the start of activities for an innovative axion experiment. Axions are still only purely hypothetical particles. Their detection could solve two fundamental problems in particle physics: What dark matter consists of and why it has not yet been possible to directly observe a CP violation for the strong interaction.

The “MADMAX” project is the MPP’s commitment to axion research. Axions are so far only a theoretical prediction and are difficult to detect: on the one hand,...

Im Focus: Molecules change shape when wet

Broadband rotational spectroscopy unravels structural reshaping of isolated molecules in the gas phase to accommodate water

In two recent publications in the Journal of Chemical Physics and in the Journal of Physical Chemistry Letters, researchers around Melanie Schnell from the Max...

Im Focus: Fraunhofer ISE Develops Highly Compact, High Frequency DC/DC Converter for Aviation

The efficiency of power electronic systems is not solely dependent on electrical efficiency but also on weight, for example, in mobile systems. When the weight of relevant components and devices in airplanes, for instance, is reduced, fuel savings can be achieved and correspondingly greenhouse gas emissions decreased. New materials and components based on gallium nitride (GaN) can help to reduce weight and increase the efficiency. With these new materials, power electronic switches can be operated at higher switching frequency, resulting in higher power density and lower material costs.

Researchers at the Fraunhofer Institute for Solar Energy Systems ISE together with partners have investigated how these materials can be used to make power...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

ICTM Conference 2017: Production technology for turbomachine manufacturing of the future

16.11.2016 | Event News

Innovation Day Laser Technology – Laser Additive Manufacturing

01.11.2016 | Event News

#IC2S2: When Social Science meets Computer Science - GESIS will host the IC2S2 conference 2017

14.10.2016 | Event News

 
Latest News

UTSA study describes new minimally invasive device to treat cancer and other illnesses

02.12.2016 | Medical Engineering

Plasma-zapping process could yield trans fat-free soybean oil product

02.12.2016 | Agricultural and Forestry Science

What do Netflix, Google and planetary systems have in common?

02.12.2016 | Physics and Astronomy

VideoLinks
B2B-VideoLinks
More VideoLinks >>>