Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Bursting 'bubbles' the origin of galactic gas clouds

01.06.2010
Like bubbles bursting on the surface of a glass of champagne, ‘bubbles’ in our Galaxy burst and leave flecks of material in the form of clouds of hydrogen gas, researchers using CSIRO’s Parkes telescope have found.

Their study explains the origin of these clouds for the first time.

Swinburne University PhD student Alyson Ford (now at the University of Michigan) and her supervisors; Dr Naomi McClure-Griffiths (CSIRO Astronomy and Space Science) and Felix Lockman (US National Radio Astronomy Observatory), have made the first detailed observations of ‘halo’ gas clouds in our Galaxy.

Just as Earth has an atmosphere, the main starry disk of our Galaxy is surrounded by a thinner halo of stars, gas and ‘dark matter’.

The halo clouds skim the surface of our Galaxy, sitting 400 to 10 000 light-years outside the Galactic disk. They are big: an average-sized cloud contains hydrogen gas 700 times the mass of the Sun and is about 200 light-years across.

“We’re studying the clouds to understand what role they play in recycling material between the disk and halo,” Dr McClure-Griffiths said.

“The clouds can fall back down into the main body of the Galaxy, returning gas to it.”

The researchers studied about 650 clouds and found striking differences between them in different areas of the Galaxy. One part of the Galaxy had three times as many clouds as another next to it, and the clouds were twice as thick.

The region with lots of thick clouds is where lots of stars form, while the region with fewer clouds also forms fewer stars.

"We’re studying the clouds to understand what role they play in recycling material between the disk and halo,"

Dr McClure-Griffiths said.But the halo clouds aren’t found exactly where stars are forming right now. Instead, they seem to be linked to earlier star formation.

Massive stars grow old quickly. After a few million years they shed material into space as a ’wind‘ and then explode.

This violence creates bubbles in the gas in space, like the holes in a Swiss cheese.

“Stellar winds and explosions sweep up gas from the Galactic disk into the lower halo.

“We’ve found this churned-up gas is ‘spritzing’ the surface of the Galactic disk in the form of halo clouds.”

A star-forming region is active for less than a million years, but a super-bubble in the Galaxy takes 20 or 30 million years to form.

“Just as yeast takes a while to make wine bubbly, stars take a while to make the Galaxy bubbly,” Dr McClure-Griffiths said.

The halo clouds are distinct from a larger population of ‘high-velocity clouds’ that also sail outside the galaxy. The halo clouds move in tandem with the rotating Galaxy, while the high-velocity clouds scud along much faster.

This study is the first to accurately locate the halo clouds in relation to the main body of the Galaxy. Its findings were presented overnight at a news conference at a meeting of the American Astronomical Society in Miami, Florida.

Media please note:

Dr McClure-Griffiths will be available to respond directly to media enquiries from 7 am to 8:20 am. To organise interviews with Dr McClure-Griffiths after 8:20 am, contact Ms Helen Sim.

Helen Sim | EurekAlert!
Further information:
http://www.csiro.au

Further reports about: Astronomy Galactic Galaxy dark matter galactic gas clouds halo of stars

More articles from Physics and Astronomy:

nachricht Physicists Design Ultrafocused Pulses
27.07.2017 | Universität Innsbruck

nachricht CCNY physicists master unexplored electron property
26.07.2017 | City College of New York

All articles from Physics and Astronomy >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Physicists Design Ultrafocused Pulses

Physicists working with researcher Oriol Romero-Isart devised a new simple scheme to theoretically generate arbitrarily short and focused electromagnetic fields. This new tool could be used for precise sensing and in microscopy.

Microwaves, heat radiation, light and X-radiation are examples for electromagnetic waves. Many applications require to focus the electromagnetic fields to...

Im Focus: Carbon Nanotubes Turn Electrical Current into Light-emitting Quasi-particles

Strong light-matter coupling in these semiconducting tubes may hold the key to electrically pumped lasers

Light-matter quasi-particles can be generated electrically in semiconducting carbon nanotubes. Material scientists and physicists from Heidelberg University...

Im Focus: Flexible proximity sensor creates smart surfaces

Fraunhofer IPA has developed a proximity sensor made from silicone and carbon nanotubes (CNT) which detects objects and determines their position. The materials and printing process used mean that the sensor is extremely flexible, economical and can be used for large surfaces. Industry and research partners can use and further develop this innovation straight away.

At first glance, the proximity sensor appears to be nothing special: a thin, elastic layer of silicone onto which black square surfaces are printed, but these...

Im Focus: 3-D scanning with water

3-D shape acquisition using water displacement as the shape sensor for the reconstruction of complex objects

A global team of computer scientists and engineers have developed an innovative technique that more completely reconstructs challenging 3D objects. An ancient...

Im Focus: Manipulating Electron Spins Without Loss of Information

Physicists have developed a new technique that uses electrical voltages to control the electron spin on a chip. The newly-developed method provides protection from spin decay, meaning that the contained information can be maintained and transmitted over comparatively large distances, as has been demonstrated by a team from the University of Basel’s Department of Physics and the Swiss Nanoscience Institute. The results have been published in Physical Review X.

For several years, researchers have been trying to use the spin of an electron to store and transmit information. The spin of each electron is always coupled...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Clash of Realities 2017: Registration now open. International Conference at TH Köln

26.07.2017 | Event News

Closing the Sustainability Circle: Protection of Food with Biobased Materials

21.07.2017 | Event News

»We are bringing Additive Manufacturing to SMEs«

19.07.2017 | Event News

 
Latest News

Programming cells with computer-like logic

27.07.2017 | Life Sciences

Identified the component that allows a lethal bacteria to spread resistance to antibiotics

27.07.2017 | Life Sciences

Malaria Already Endemic in the Mediterranean by the Roman Period

27.07.2017 | Health and Medicine

VideoLinks
B2B-VideoLinks
More VideoLinks >>>