Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Bridging the gap in nanoantennas

21.04.2009
In a recent publication in Nature Photonics, a joint team of researchers at CIC nanoGUNE, Donostia International Physics Center DIPC, Centro de Física de Materiales of CSIC/UPV-EHU in San Sebastian (Spain), Harvard University (USA) and the Max Planck Institute of Biochemistry in Munich (Germany) reports an innovative method for controlling light on the nanoscale by adopting tuning concepts from radio-frequency technology.

The method opens the door for targeted design of antenna-based applications including highly sensitive biosensors and extremely fast photodetectors, which could play an important role in future biomedical diagnostics and information processing.

An antenna is a device designed to transmit or receive electromagnetic waves. Radio frequency antennas find wide use in systems such as radio and television broadcasting, point-to-point radio communication, wireless LAN, radar, and space exploration. In turn, an optical antenna is a device which acts as an effective receiver and transmitter of visible or infrared light. It has the ability to concentrate (focus) light to tiny spots of nanometer-scale dimensions, which is several orders of magnitude smaller than what conventional lenses can achieve. Tiny objects such as molecules or semiconductors that are placed into these so-called "hot spots" of the antenna can efficiently interact with light. Therefore optical antennas boost single molecule spectroscopy or signal-to-noise in detector applications.

In their experiments the researchers studied a special type of infrared antennas, featuring a very narrow gap at the center. These so called gap-antennas generate a very intense "hot spot" inside the gap, allowing for highly efficient nano-focusing of light. To study how the presence of matter inside the gap (the "load") affects the antenna behavior, the researchers fabricated small metal bridges inside the gap. They mapped the near-field oscillations of the different antennas with a modified version of the scattering-type near-field microscope that the Max Planck and nanoGUNE researchers had pioneered over the last decade. For this work, they chose dielectric tips and operated in transmission mode, allowing for imaging local antenna fields in details as small as 50 nm without disturbing the antenna. "By monitoring the near-field oscillations of the different antennas with our novel near-field microscope, we were able to directly visualize how matter inside the gap affects the antenna response. The effect could find interesting applications for tuning of optical antennas" says Rainer Hillenbrand leader of the Nanooptics group at the newly established research institute CIC nanoGUNE Consolider.

The nanooptics group from DIPC and CSIC-UPV/EHU led by Javier Aizpurua in San Sebastián fully confirmed and helped to understand the experimental results by means of full electrodynamic calculations. The calculated maps of the antenna fields are in good agreement with the experimentally observed images. The simulations add deep insights into the dependence of the antenna modes on the bridging, thus confirming the validity and robustness of the "loading" concept to manipulate and control nanoscale local fields in optics.

Furthermore, the researchers applied the well developed radio–frequency antenna design concepts to visible and infrared frequencies, and explained the behavior of the loaded antennas within the framework of optical circuit theory. A simple circuit model showed remarkable agreement with the results of the numerical calculations of the optical resonances. "By extending circuit theory to visible and infrared frequencies, the design of novel photonic devices and detectors will become more efficient. This bridges the gap between these two disciplines" says Javier Aizpurua.

With this work, the researches provide first experimental evidence that the local antenna fields can be controlled by gap-loading. This opens the door for designing near-field patterns in the nanoscale by load manipulation, without the need to change antenna length, which could be highly valuable for the development of compact and integrated nanophotonic devices.

Contact:
Dr. Rainer Hillenbrand
Nanooptics Laboratory
CIC nanoGUNE Consolider
Tolosa Hiribidea 76
200018 Donostia - San Sebastian, Spain
phone: +34 943 574 007
r.hillenbrand@nanogune.eu

Oihane Lakar | EurekAlert!
Further information:
http://www.elhuyar.com
http://www.nanogune.eu

More articles from Physics and Astronomy:

nachricht First Juno science results supported by University of Leicester's Jupiter 'forecast'
26.05.2017 | University of Leicester

nachricht Measured for the first time: Direction of light waves changed by quantum effect
24.05.2017 | Vienna University of Technology

All articles from Physics and Astronomy >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Can the immune system be boosted against Staphylococcus aureus by delivery of messenger RNA?

Staphylococcus aureus is a feared pathogen (MRSA, multi-resistant S. aureus) due to frequent resistances against many antibiotics, especially in hospital infections. Researchers at the Paul-Ehrlich-Institut have identified immunological processes that prevent a successful immune response directed against the pathogenic agent. The delivery of bacterial proteins with RNA adjuvant or messenger RNA (mRNA) into immune cells allows the re-direction of the immune response towards an active defense against S. aureus. This could be of significant importance for the development of an effective vaccine. PLOS Pathogens has published these research results online on 25 May 2017.

Staphylococcus aureus (S. aureus) is a bacterium that colonizes by far more than half of the skin and the mucosa of adults, usually without causing infections....

Im Focus: A quantum walk of photons

Physicists from the University of Würzburg are capable of generating identical looking single light particles at the push of a button. Two new studies now demonstrate the potential this method holds.

The quantum computer has fuelled the imagination of scientists for decades: It is based on fundamentally different phenomena than a conventional computer....

Im Focus: Turmoil in sluggish electrons’ existence

An international team of physicists has monitored the scattering behaviour of electrons in a non-conducting material in real-time. Their insights could be beneficial for radiotherapy.

We can refer to electrons in non-conducting materials as ‘sluggish’. Typically, they remain fixed in a location, deep inside an atomic composite. It is hence...

Im Focus: Wafer-thin Magnetic Materials Developed for Future Quantum Technologies

Two-dimensional magnetic structures are regarded as a promising material for new types of data storage, since the magnetic properties of individual molecular building blocks can be investigated and modified. For the first time, researchers have now produced a wafer-thin ferrimagnet, in which molecules with different magnetic centers arrange themselves on a gold surface to form a checkerboard pattern. Scientists at the Swiss Nanoscience Institute at the University of Basel and the Paul Scherrer Institute published their findings in the journal Nature Communications.

Ferrimagnets are composed of two centers which are magnetized at different strengths and point in opposing directions. Two-dimensional, quasi-flat ferrimagnets...

Im Focus: World's thinnest hologram paves path to new 3-D world

Nano-hologram paves way for integration of 3-D holography into everyday electronics

An Australian-Chinese research team has created the world's thinnest hologram, paving the way towards the integration of 3D holography into everyday...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Marine Conservation: IASS Contributes to UN Ocean Conference in New York on 5-9 June

24.05.2017 | Event News

AWK Aachen Machine Tool Colloquium 2017: Internet of Production for Agile Enterprises

23.05.2017 | Event News

Dortmund MST Conference presents Individualized Healthcare Solutions with micro and nanotechnology

22.05.2017 | Event News

 
Latest News

How herpesviruses win the footrace against the immune system

26.05.2017 | Life Sciences

Water forms 'spine of hydration' around DNA, group finds

26.05.2017 | Life Sciences

First Juno science results supported by University of Leicester's Jupiter 'forecast'

26.05.2017 | Physics and Astronomy

VideoLinks
B2B-VideoLinks
More VideoLinks >>>