Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:


Breakthrough Could Change Sampling Technology Forever

Researchers from the Technion-Israel institute of Technology have made a breakthrough that could revolutionize the way broadband signals are sampled, recorded and processed. The breakthrough could someday be used to make significant improvements in radar capabilities and performance, increase the capacity of audio recording devices, and reduce patient exposure to radiation during such procedures as MRIs, x-rays and CT-scans.

“Sampling” technology is central to the operation of these devices and in general to the field of digital communications. Increasing the bandwidth of the signals that can be sampled while maintaining a low sampling rate would increase the capabilities of these devices.

“In digital devices, physical signals (images, sounds, etc.) are stored using a series of bits,” explains Prof. Yonina Eldar of the Faculty of Electrical Engineering. “The goal of the sampling stage is to cleverly convert a physical signal into bits of data (a series of zeros and ones) in such a way that the true underlying signal can later be recovered. This recovery is performed in the reconstruction process, in which the bits are translated back into a physical signal that can be heard or seen.”

Using only commercially available components, the team led by Prof. Eldar has built a patented prototype that far exceeds basic established limits for sampling by hundreds of percentages. It also precludes the need for processors with high computational capabilities.

Until the Technion breakthrough, it was believed that exact reconstruction of a signal with unknown spectral support using digital processing was possible only if it was sampled at a rate twice the maximum frequency of the signal (as established in 1949 by the Nyquist-Shannon sampling theorem).

Under Prof. Eldar’s supervision, graduate student Moshe Mishali set out to design a single sampling system for signals with multiple, broadband channels. Doing so successfully would make it possible to sample and reconstruct those signals perfectly at significantly lower rates than existing samplers. According to Prof. Eldar, the breakthrough was achieved by utilizing the fact that there is no broadcasting in parts of the spectrum.

“The idea is to wisely use the ‘holes’ in the spectrum in order to significantly lower the sampling rate without damaging the signal,” explains Prof. Eldar. “The difficulty lies in the fact that since we do not know where in the spectrum these holes are placed, traditional mathematical models can no longer be used to characterize and manipulate such signals. What we were able to prove is that the mere fact that we know the signal does not occupy the entire spectrum, enables reducing the sampling rate, something that was not possible until now.”

The Technion-Israel Institute of Technology is Israel's leading science and technology university. Home to the country's winners of the Nobel Prize in science, it commands a worldwide reputation for its pioneering work in nanotechnology, computer science, biotechnology, water-resource management, materials engineering, aerospace and medicine. The majority of the founders and managers of Israel's high-tech companies are alumni. Based in New York City, the American Technion Society (ATS) is the leading American organization supporting higher education in Israel, with offices around the country.

Kevin Hattori | Newswise Science News
Further information:

More articles from Physics and Astronomy:

nachricht Move over, lasers: Scientists can now create holograms from neutrons, too
21.10.2016 | National Institute of Standards and Technology (NIST)

nachricht Finding the lightest superdeformed triaxial atomic nucleus
20.10.2016 | The Henryk Niewodniczanski Institute of Nuclear Physics Polish Academy of Sciences

All articles from Physics and Astronomy >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: New 3-D wiring technique brings scalable quantum computers closer to reality

Researchers from the Institute for Quantum Computing (IQC) at the University of Waterloo led the development of a new extensible wiring technique capable of controlling superconducting quantum bits, representing a significant step towards to the realization of a scalable quantum computer.

"The quantum socket is a wiring method that uses three-dimensional wires based on spring-loaded pins to address individual qubits," said Jeremy Béjanin, a PhD...

Im Focus: Scientists develop a semiconductor nanocomposite material that moves in response to light

In a paper in Scientific Reports, a research team at Worcester Polytechnic Institute describes a novel light-activated phenomenon that could become the basis for applications as diverse as microscopic robotic grippers and more efficient solar cells.

A research team at Worcester Polytechnic Institute (WPI) has developed a revolutionary, light-activated semiconductor nanocomposite material that can be used...

Im Focus: Diamonds aren't forever: Sandia, Harvard team create first quantum computer bridge

By forcefully embedding two silicon atoms in a diamond matrix, Sandia researchers have demonstrated for the first time on a single chip all the components needed to create a quantum bridge to link quantum computers together.

"People have already built small quantum computers," says Sandia researcher Ryan Camacho. "Maybe the first useful one won't be a single giant quantum computer...

Im Focus: New Products - Highlights of COMPAMED 2016

COMPAMED has become the leading international marketplace for suppliers of medical manufacturing. The trade fair, which takes place every November and is co-located to MEDICA in Dusseldorf, has been steadily growing over the past years and shows that medical technology remains a rapidly growing market.

In 2016, the joint pavilion by the IVAM Microtechnology Network, the Product Market “High-tech for Medical Devices”, will be located in Hall 8a again and will...

Im Focus: Ultra-thin ferroelectric material for next-generation electronics

'Ferroelectric' materials can switch between different states of electrical polarization in response to an external electric field. This flexibility means they show promise for many applications, for example in electronic devices and computer memory. Current ferroelectric materials are highly valued for their thermal and chemical stability and rapid electro-mechanical responses, but creating a material that is scalable down to the tiny sizes needed for technologies like silicon-based semiconductors (Si-based CMOS) has proven challenging.

Now, Hiroshi Funakubo and co-workers at the Tokyo Institute of Technology, in collaboration with researchers across Japan, have conducted experiments to...

All Focus news of the innovation-report >>>



Event News

#IC2S2: When Social Science meets Computer Science - GESIS will host the IC2S2 conference 2017

14.10.2016 | Event News

Agricultural Trade Developments and Potentials in Central Asia and the South Caucasus

14.10.2016 | Event News

World Health Summit – Day Three: A Call to Action

12.10.2016 | Event News

Latest News

Resolving the mystery of preeclampsia

21.10.2016 | Health and Medicine

Stanford researchers create new special-purpose computer that may someday save us billions

21.10.2016 | Information Technology

From ancient fossils to future cars

21.10.2016 | Materials Sciences

More VideoLinks >>>