Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Breakthrough Could Change Sampling Technology Forever

27.01.2010
Researchers from the Technion-Israel institute of Technology have made a breakthrough that could revolutionize the way broadband signals are sampled, recorded and processed. The breakthrough could someday be used to make significant improvements in radar capabilities and performance, increase the capacity of audio recording devices, and reduce patient exposure to radiation during such procedures as MRIs, x-rays and CT-scans.

“Sampling” technology is central to the operation of these devices and in general to the field of digital communications. Increasing the bandwidth of the signals that can be sampled while maintaining a low sampling rate would increase the capabilities of these devices.

“In digital devices, physical signals (images, sounds, etc.) are stored using a series of bits,” explains Prof. Yonina Eldar of the Faculty of Electrical Engineering. “The goal of the sampling stage is to cleverly convert a physical signal into bits of data (a series of zeros and ones) in such a way that the true underlying signal can later be recovered. This recovery is performed in the reconstruction process, in which the bits are translated back into a physical signal that can be heard or seen.”

Using only commercially available components, the team led by Prof. Eldar has built a patented prototype that far exceeds basic established limits for sampling by hundreds of percentages. It also precludes the need for processors with high computational capabilities.

Until the Technion breakthrough, it was believed that exact reconstruction of a signal with unknown spectral support using digital processing was possible only if it was sampled at a rate twice the maximum frequency of the signal (as established in 1949 by the Nyquist-Shannon sampling theorem).

Under Prof. Eldar’s supervision, graduate student Moshe Mishali set out to design a single sampling system for signals with multiple, broadband channels. Doing so successfully would make it possible to sample and reconstruct those signals perfectly at significantly lower rates than existing samplers. According to Prof. Eldar, the breakthrough was achieved by utilizing the fact that there is no broadcasting in parts of the spectrum.

“The idea is to wisely use the ‘holes’ in the spectrum in order to significantly lower the sampling rate without damaging the signal,” explains Prof. Eldar. “The difficulty lies in the fact that since we do not know where in the spectrum these holes are placed, traditional mathematical models can no longer be used to characterize and manipulate such signals. What we were able to prove is that the mere fact that we know the signal does not occupy the entire spectrum, enables reducing the sampling rate, something that was not possible until now.”

The Technion-Israel Institute of Technology is Israel's leading science and technology university. Home to the country's winners of the Nobel Prize in science, it commands a worldwide reputation for its pioneering work in nanotechnology, computer science, biotechnology, water-resource management, materials engineering, aerospace and medicine. The majority of the founders and managers of Israel's high-tech companies are alumni. Based in New York City, the American Technion Society (ATS) is the leading American organization supporting higher education in Israel, with offices around the country.

Kevin Hattori | Newswise Science News
Further information:
http://www.ats.org

More articles from Physics and Astronomy:

nachricht SF State astronomer searches for signs of life on Wolf 1061 exoplanet
20.01.2017 | San Francisco State University

nachricht Molecule flash mob
19.01.2017 | Technische Universität Wien

All articles from Physics and Astronomy >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Traffic jam in empty space

New success for Konstanz physicists in studying the quantum vacuum

An important step towards a completely new experimental access to quantum physics has been made at University of Konstanz. The team of scientists headed by...

Im Focus: How gut bacteria can make us ill

HZI researchers decipher infection mechanisms of Yersinia and immune responses of the host

Yersiniae cause severe intestinal infections. Studies using Yersinia pseudotuberculosis as a model organism aim to elucidate the infection mechanisms of these...

Im Focus: Interfacial Superconductivity: Magnetic and superconducting order revealed simultaneously

Researchers from the University of Hamburg in Germany, in collaboration with colleagues from the University of Aarhus in Denmark, have synthesized a new superconducting material by growing a few layers of an antiferromagnetic transition-metal chalcogenide on a bismuth-based topological insulator, both being non-superconducting materials.

While superconductivity and magnetism are generally believed to be mutually exclusive, surprisingly, in this new material, superconducting correlations...

Im Focus: Studying fundamental particles in materials

Laser-driving of semimetals allows creating novel quasiparticle states within condensed matter systems and switching between different states on ultrafast time scales

Studying properties of fundamental particles in condensed matter systems is a promising approach to quantum field theory. Quasiparticles offer the opportunity...

Im Focus: Designing Architecture with Solar Building Envelopes

Among the general public, solar thermal energy is currently associated with dark blue, rectangular collectors on building roofs. Technologies are needed for aesthetically high quality architecture which offer the architect more room for manoeuvre when it comes to low- and plus-energy buildings. With the “ArKol” project, researchers at Fraunhofer ISE together with partners are currently developing two façade collectors for solar thermal energy generation, which permit a high degree of design flexibility: a strip collector for opaque façade sections and a solar thermal blind for transparent sections. The current state of the two developments will be presented at the BAU 2017 trade fair.

As part of the “ArKol – development of architecturally highly integrated façade collectors with heat pipes” project, Fraunhofer ISE together with its partners...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Sustainable Water use in Agriculture in Eastern Europe and Central Asia

19.01.2017 | Event News

12V, 48V, high-voltage – trends in E/E automotive architecture

10.01.2017 | Event News

2nd Conference on Non-Textual Information on 10 and 11 May 2017 in Hannover

09.01.2017 | Event News

 
Latest News

Bodyguards in the gut have a chemical weapon

20.01.2017 | Life Sciences

SF State astronomer searches for signs of life on Wolf 1061 exoplanet

20.01.2017 | Physics and Astronomy

Treated carbon pulls radioactive elements from water

20.01.2017 | Materials Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>