Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Black hole, star collisions may illuminate universe's dark side

20.09.2011
Scientists looking to capture evidence of dark matter -- the invisible substance thought to constitute much of the universe -- may find a helpful tool in the recent work of researchers from Princeton University and New York University.

The team unveiled in a report in the journal Physical Review Letters this month a ready-made method for detecting the collision of stars with an elusive type of black hole that is on the short list of objects believed to make up dark matter. Such a discovery could serve as observable proof of dark matter and provide a much deeper understanding of the universe's inner workings.

Postdoctoral researchers Shravan Hanasoge of Princeton's Department of Geosciences and Michael Kesden of NYU's Center for Cosmology and Particle Physics simulated the visible result of a primordial black hole passing through a star. Theoretical remnants of the Big Bang, primordial black holes possess the properties of dark matter and are one of various cosmic objects thought to be the source of the mysterious substance, but they have yet to be observed.

If primordial black holes are the source of dark matter, the sheer number of stars in the Milky Way galaxy -- roughly 100 billion -- makes an encounter inevitable, the authors report. Unlike larger black holes, a primordial black hole would not "swallow" the star, but cause noticeable vibrations on the star's surface as it passes through.

Thus, as the number of telescopes and satellites probing distant stars in the Milky Way increases, so do the chances to observe a primordial black hole as it slides harmlessly through one of the galaxy's billions of stars, Hanasoge said. The computer model developed by Hanasoge and Kesden can be used with these current solar-observation techniques to offer a more precise method for detecting primordial black holes than existing tools.

"If astronomers were just looking at the sun, the chances of observing a primordial black hole are not likely, but people are now looking at thousands of stars," Hanasoge said.

"There's a larger question of what constitutes dark matter, and if a primordial black hole were found it would fit all the parameters -- they have mass and force so they directly influence other objects in the universe, and they don't interact with light. Identifying one would have profound implications for our understanding of the early universe and dark matter."

Although dark matter has not been observed directly, galaxies are thought to reside in extended dark-matter halos based on documented gravitational effects of these halos on galaxies' visible stars and gas. Like other proposed dark-matter candidates, primordial black holes are difficult to detect because they neither emit nor absorb light, stealthily traversing the universe with only subtle gravitational effects on nearby objects.

Because primordial black holes are heavier than other dark-matter candidates, however, their interaction with stars would be detectable by existing and future stellar observatories, Kesden said. When crossing paths with a star, a primordial black hole's gravity would squeeze the star, and then, once the black hole passed through, cause the star's surface to ripple as it snaps back into place.

"If you imagine poking a water balloon and watching the water ripple inside, that's similar to how a star's surface appears," Kesden said. "By looking at how a star's surface moves, you can figure out what's going on inside. If a black hole goes through, you can see the surface vibrate."

Eyeing the sun's surface for hints of dark matter
Kesden and Hanasoge used the sun as a model to calculate the effect of a primordial black hole on a star's surface. Kesden, whose research includes black holes and dark matter, calculated the masses of a primordial black hole, as well as the likely trajectory of the object through the sun. Hanasoge, who studies seismology in the sun, Earth and stars, worked out the black hole's vibrational effect on the sun's surface.

Video simulations of the researchers' calculations were created by NASA's Tim Sandstrom using the Pleiades supercomputer at the agency's Ames Research Center in California. One clip shows the vibrations of the sun's surface as a primordial black hole -- represented by a white trail -- passes through its interior. A second movie portrays the result of a black hole grazing the Sun's surface.

Marc Kamionkowski, a professor of physics and astronomy at Johns Hopkins University, said that the work serves as a toolkit for detecting primordial black holes, as Hanasoge and Kesden have provided a thorough and accurate method that takes advantage of existing solar observations. A theoretical physicist well known for his work with large-scale structures and the universe's early history, Kamionkowski had no role in the project, but is familiar with it.

"It's been known that as a primordial black hole went by a star, it would have an effect, but this is the first time we have calculations that are numerically precise," Kamionkowski said.

"This is a clever idea that takes advantage of observations and measurements already made by solar physics. It's like someone calling you to say there might be a million dollars under your front doormat. If it turns out to not be true, it cost you nothing to look. In this case, there might be dark matter in the data sets astronomers already have, so why not look?"

One significant aspect of Kesden and Hanasoge's technique, Kamionkowski said, is that it narrows a significant gap in the mass that can be detected by existing methods of trolling for primordial black holes .

The search for primordial black holes has thus far been limited to masses too small to include a black hole, or so large that "those black holes would have disrupted galaxies in heinous ways we would have noticed," Kamionkowski said. "Primordial black holes have been somewhat neglected and I think that's because there has not been a single, well-motivated idea of how to find them within the range in which they could likely exist."

The current mass range in which primordial black holes could be observed was set based on previous direct observations of Hawking radiation -- the emissions from black holes as they evaporate into gamma rays -- as well as of the bending of light around large stellar objects, Kesden said. The difference in mass between those phenomena, however, is enormous, even in astronomical terms. Hawking radiation can only be observed if the evaporating black hole's mass is less than 100 quadrillion grams. On the other end, an object must be larger than 100 septillion (24 zeroes) grams for light to visibly bend around it. The search for primordial black holes covered a swath of mass that spans a factor of 1 billion, Kesden explained -- similar to searching for an unknown object with a weight somewhere between that of a penny and a mining dump truck.

He and Hanasoge suggest a technique to give that range a much-needed trim and established more specific parameters for spotting a primordial black hole. The pair found through their simulations that a primordial black hole larger than 1 sextillion (21 zeroes) grams -- roughly the mass of an asteroid -- would produce a noticeable effect on a star's surface.

"Now that we know primordial black holes can produce detectable vibrations in stars, we could try to look at a larger sample of stars than just our own sun," Kesden said.

"The Milky Way has 100 billion stars, so about 10,000 detectable events should be happening every year in our galaxy if we just knew where to look."

This research was funded by grants from NASA and by the James Arthur Postdoctoral Fellowship at New York University.

Morgan Kelly | EurekAlert!
Further information:
http://www.princeton.edu

More articles from Physics and Astronomy:

nachricht NASA detects solar flare pulses at Sun and Earth
17.11.2017 | NASA/Goddard Space Flight Center

nachricht Pluto's hydrocarbon haze keeps dwarf planet colder than expected
16.11.2017 | University of California - Santa Cruz

All articles from Physics and Astronomy >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: A “cosmic snake” reveals the structure of remote galaxies

The formation of stars in distant galaxies is still largely unexplored. For the first time, astron-omers at the University of Geneva have now been able to closely observe a star system six billion light-years away. In doing so, they are confirming earlier simulations made by the University of Zurich. One special effect is made possible by the multiple reflections of images that run through the cosmos like a snake.

Today, astronomers have a pretty accurate idea of how stars were formed in the recent cosmic past. But do these laws also apply to older galaxies? For around a...

Im Focus: Visual intelligence is not the same as IQ

Just because someone is smart and well-motivated doesn't mean he or she can learn the visual skills needed to excel at tasks like matching fingerprints, interpreting medical X-rays, keeping track of aircraft on radar displays or forensic face matching.

That is the implication of a new study which shows for the first time that there is a broad range of differences in people's visual ability and that these...

Im Focus: Novel Nano-CT device creates high-resolution 3D-X-rays of tiny velvet worm legs

Computer Tomography (CT) is a standard procedure in hospitals, but so far, the technology has not been suitable for imaging extremely small objects. In PNAS, a team from the Technical University of Munich (TUM) describes a Nano-CT device that creates three-dimensional x-ray images at resolutions up to 100 nanometers. The first test application: Together with colleagues from the University of Kassel and Helmholtz-Zentrum Geesthacht the researchers analyzed the locomotory system of a velvet worm.

During a CT analysis, the object under investigation is x-rayed and a detector measures the respective amount of radiation absorbed from various angles....

Im Focus: Researchers Develop Data Bus for Quantum Computer

The quantum world is fragile; error correction codes are needed to protect the information stored in a quantum object from the deteriorating effects of noise. Quantum physicists in Innsbruck have developed a protocol to pass quantum information between differently encoded building blocks of a future quantum computer, such as processors and memories. Scientists may use this protocol in the future to build a data bus for quantum computers. The researchers have published their work in the journal Nature Communications.

Future quantum computers will be able to solve problems where conventional computers fail today. We are still far away from any large-scale implementation,...

Im Focus: Wrinkles give heat a jolt in pillared graphene

Rice University researchers test 3-D carbon nanostructures' thermal transport abilities

Pillared graphene would transfer heat better if the theoretical material had a few asymmetric junctions that caused wrinkles, according to Rice University...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Ecology Across Borders: International conference brings together 1,500 ecologists

15.11.2017 | Event News

Road into laboratory: Users discuss biaxial fatigue-testing for car and truck wheel

15.11.2017 | Event News

#Berlin5GWeek: The right network for Industry 4.0

30.10.2017 | Event News

 
Latest News

NASA detects solar flare pulses at Sun and Earth

17.11.2017 | Physics and Astronomy

NIST scientists discover how to switch liver cancer cell growth from 2-D to 3-D structures

17.11.2017 | Health and Medicine

The importance of biodiversity in forests could increase due to climate change

17.11.2017 | Studies and Analyses

VideoLinks
B2B-VideoLinks
More VideoLinks >>>