Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Bio-inspired microlens arrays

06.03.2012
The University of Konstanz, the Max-Planck-Institute of Colloids and Interfaces and two Korean institutes develop a natural process for the synthesis of microlens arrays

The development of highly complex microlens arrays via the natural way and with remarkably simple components: Chemists of the University of Konstanz and the Max-Planck-Institute of Colloids and Interfaces have developed a process which highly simplifies the production of microlens arrays. Based on calcium carbonate (chalk), the researchers generate naturally grown surface layers with an ordered position of micrometer sized half spherical chalk lenses.

So far, micro lens arrays could only be generated with a sophisticated lithographic process on basis of plastics. The development of the new synthesis process was achieved in cooperation with the Korea Institute of Geoscience and Mineral Resources and the South Korean university KAIST.

For the generation of the optically fully functional microlens arrays, the researchers exclusively need a saturated calcium solution, carbon dioxide from air and a broadly available surfactant (a soap molecule), which regulates the formation of the microlens structure. The process is by far more cost effective and simple than existing production methods. „It is remarkable that structure formation occurs by itself in water at room temperature – completely similar to the archetype Nature. This is an example for the successful application of biological principles for the generation of advanced optical elements completely without use of energy or toxic chemicals“, summarises Konstanz chemist Prof. Dr. Helmut Cölfen the advantages. The new process in which the micro lens arrays equally “grow” in a natural way was developed starting from a natural archetype: The so-called brittlestar, a relative of the starfish, uses a chalk microlens array on its skin to change colour according to the lighting conditions.

A microlens array is an optical field with a large number of micrometer sized miniature lenses placed closely together. Microlens arrays are applied for miniaturisation of optical systems, focussing of light with a precision of a millionth meter and to work with very small wavelengths. Amongst other applications, microlens arrays are applied for cell phone cameras but also in medical technology. The new process is also suitable to generate anti-reflex coatings, which are for example known from eyeglasses. Further advantages of the new method are that the chalk lens systems have shorter focal lengths compared to the so far exisiting plastic lens arrays and that the lens systems can be transferred to other surfaces by a simple dip coating. Furthermore, living cells like the microlens surface which enables future biomedical research combined with optics.

„It is truly remarkable how simple the generation of the microlens arrays is: All applied materials are common and biocompatible chemicals, energy supply is not necessary. The reaction takes place at room temperature in water according to a principle which Nature uses for Biominerals“, explains Helmut Cölfen. „Beside all these technical advantages, the amazing fact that such highly complex structures like a microlens array can be generated using comparatively simple molecules makes this process highly interesting for the scientist“, Cölfen outlines further perspectives for science.

http://www.pi.uni-konstanz.de/2012/031.jpg
"Microlens array based on chalk"
Kyu-Bock Lee, Max-Planck-Institute of Colloids and Interfaces
Contact:
University of Konstanz
Communications and Marketing
Phone: ++49 7531 / 88-3603
E-Mail: kum@uni-konstanz.de
Prof. Dr. Helmut Cölfen
University of Konstanz
Physical Chemistry
Universitätsstraße 10
78464 Konstanz, Germany
Phone: ++49 7531 / 88-4063
E-Mail: Helmut.Coelfen@uni-konstanz.de

Julia Wandt | idw
Further information:
http://www.uni-konstanz.de
http://cms.uni-konstanz.de/coelfen

More articles from Physics and Astronomy:

nachricht Temperature-controlled fiber-optic light source with liquid core
20.06.2018 | Leibniz-Institut für Photonische Technologien e. V.

nachricht New material for splitting water
19.06.2018 | American Institute of Physics

All articles from Physics and Astronomy >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Temperature-controlled fiber-optic light source with liquid core

In a recent publication in the renowned journal Optica, scientists of Leibniz-Institute of Photonic Technology (Leibniz IPHT) in Jena showed that they can accurately control the optical properties of liquid-core fiber lasers and therefore their spectral band width by temperature and pressure tuning.

Already last year, the researchers provided experimental proof of a new dynamic of hybrid solitons– temporally and spectrally stationary light waves resulting...

Im Focus: Overdosing on Calcium

Nano crystals impact stem cell fate during bone formation

Scientists from the University of Freiburg and the University of Basel identified a master regulator for bone regeneration. Prasad Shastri, Professor of...

Im Focus: AchemAsia 2019 will take place in Shanghai

Moving into its fourth decade, AchemAsia is setting out for new horizons: The International Expo and Innovation Forum for Sustainable Chemical Production will take place from 21-23 May 2019 in Shanghai, China. With an updated event profile, the eleventh edition focusses on topics that are especially relevant for the Chinese process industry, putting a strong emphasis on sustainability and innovation.

Founded in 1989 as a spin-off of ACHEMA to cater to the needs of China’s then developing industry, AchemAsia has since grown into a platform where the latest...

Im Focus: First real-time test of Li-Fi utilization for the industrial Internet of Things

The BMBF-funded OWICELLS project was successfully completed with a final presentation at the BMW plant in Munich. The presentation demonstrated a Li-Fi communication with a mobile robot, while the robot carried out usual production processes (welding, moving and testing parts) in a 5x5m² production cell. The robust, optical wireless transmission is based on spatial diversity; in other words, data is sent and received simultaneously by several LEDs and several photodiodes. The system can transmit data at more than 100 Mbit/s and five milliseconds latency.

Modern production technologies in the automobile industry must become more flexible in order to fulfil individual customer requirements.

Im Focus: Sharp images with flexible fibers

An international team of scientists has discovered a new way to transfer image information through multimodal fibers with almost no distortion - even if the fiber is bent. The results of the study, to which scientist from the Leibniz-Institute of Photonic Technology Jena (Leibniz IPHT) contributed, were published on 6thJune in the highly-cited journal Physical Review Letters.

Endoscopes allow doctors to see into a patient’s body like through a keyhole. Typically, the images are transmitted via a bundle of several hundreds of optical...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

Munich conference on asteroid detection, tracking and defense

13.06.2018 | Event News

2nd International Baltic Earth Conference in Denmark: “The Baltic Sea region in Transition”

08.06.2018 | Event News

ISEKI_Food 2018: Conference with Holistic View of Food Production

05.06.2018 | Event News

 
Latest News

Creating a new composite fuel for new-generation fast reactors

20.06.2018 | Materials Sciences

Game-changing finding pushes 3D-printing to the molecular limit

20.06.2018 | Materials Sciences

Could this material enable autonomous vehicles to come to market sooner?

20.06.2018 | Materials Sciences

VideoLinks
Science & Research
Overview of more VideoLinks >>>