Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Bio-inspired microlens arrays

06.03.2012
The University of Konstanz, the Max-Planck-Institute of Colloids and Interfaces and two Korean institutes develop a natural process for the synthesis of microlens arrays

The development of highly complex microlens arrays via the natural way and with remarkably simple components: Chemists of the University of Konstanz and the Max-Planck-Institute of Colloids and Interfaces have developed a process which highly simplifies the production of microlens arrays. Based on calcium carbonate (chalk), the researchers generate naturally grown surface layers with an ordered position of micrometer sized half spherical chalk lenses.

So far, micro lens arrays could only be generated with a sophisticated lithographic process on basis of plastics. The development of the new synthesis process was achieved in cooperation with the Korea Institute of Geoscience and Mineral Resources and the South Korean university KAIST.

For the generation of the optically fully functional microlens arrays, the researchers exclusively need a saturated calcium solution, carbon dioxide from air and a broadly available surfactant (a soap molecule), which regulates the formation of the microlens structure. The process is by far more cost effective and simple than existing production methods. „It is remarkable that structure formation occurs by itself in water at room temperature – completely similar to the archetype Nature. This is an example for the successful application of biological principles for the generation of advanced optical elements completely without use of energy or toxic chemicals“, summarises Konstanz chemist Prof. Dr. Helmut Cölfen the advantages. The new process in which the micro lens arrays equally “grow” in a natural way was developed starting from a natural archetype: The so-called brittlestar, a relative of the starfish, uses a chalk microlens array on its skin to change colour according to the lighting conditions.

A microlens array is an optical field with a large number of micrometer sized miniature lenses placed closely together. Microlens arrays are applied for miniaturisation of optical systems, focussing of light with a precision of a millionth meter and to work with very small wavelengths. Amongst other applications, microlens arrays are applied for cell phone cameras but also in medical technology. The new process is also suitable to generate anti-reflex coatings, which are for example known from eyeglasses. Further advantages of the new method are that the chalk lens systems have shorter focal lengths compared to the so far exisiting plastic lens arrays and that the lens systems can be transferred to other surfaces by a simple dip coating. Furthermore, living cells like the microlens surface which enables future biomedical research combined with optics.

„It is truly remarkable how simple the generation of the microlens arrays is: All applied materials are common and biocompatible chemicals, energy supply is not necessary. The reaction takes place at room temperature in water according to a principle which Nature uses for Biominerals“, explains Helmut Cölfen. „Beside all these technical advantages, the amazing fact that such highly complex structures like a microlens array can be generated using comparatively simple molecules makes this process highly interesting for the scientist“, Cölfen outlines further perspectives for science.

http://www.pi.uni-konstanz.de/2012/031.jpg
"Microlens array based on chalk"
Kyu-Bock Lee, Max-Planck-Institute of Colloids and Interfaces
Contact:
University of Konstanz
Communications and Marketing
Phone: ++49 7531 / 88-3603
E-Mail: kum@uni-konstanz.de
Prof. Dr. Helmut Cölfen
University of Konstanz
Physical Chemistry
Universitätsstraße 10
78464 Konstanz, Germany
Phone: ++49 7531 / 88-4063
E-Mail: Helmut.Coelfen@uni-konstanz.de

Julia Wandt | idw
Further information:
http://www.uni-konstanz.de
http://cms.uni-konstanz.de/coelfen

More articles from Physics and Astronomy:

nachricht New NASA study improves search for habitable worlds
20.10.2017 | NASA/Goddard Space Flight Center

nachricht Physics boosts artificial intelligence methods
19.10.2017 | California Institute of Technology

All articles from Physics and Astronomy >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Neutron star merger directly observed for the first time

University of Maryland researchers contribute to historic detection of gravitational waves and light created by event

On August 17, 2017, at 12:41:04 UTC, scientists made the first direct observation of a merger between two neutron stars--the dense, collapsed cores that remain...

Im Focus: Breaking: the first light from two neutron stars merging

Seven new papers describe the first-ever detection of light from a gravitational wave source. The event, caused by two neutron stars colliding and merging together, was dubbed GW170817 because it sent ripples through space-time that reached Earth on 2017 August 17. Around the world, hundreds of excited astronomers mobilized quickly and were able to observe the event using numerous telescopes, providing a wealth of new data.

Previous detections of gravitational waves have all involved the merger of two black holes, a feat that won the 2017 Nobel Prize in Physics earlier this month....

Im Focus: Smart sensors for efficient processes

Material defects in end products can quickly result in failures in many areas of industry, and have a massive impact on the safe use of their products. This is why, in the field of quality assurance, intelligent, nondestructive sensor systems play a key role. They allow testing components and parts in a rapid and cost-efficient manner without destroying the actual product or changing its surface. Experts from the Fraunhofer IZFP in Saarbrücken will be presenting two exhibits at the Blechexpo in Stuttgart from 7–10 November 2017 that allow fast, reliable, and automated characterization of materials and detection of defects (Hall 5, Booth 5306).

When quality testing uses time-consuming destructive test methods, it can result in enormous costs due to damaging or destroying the products. And given that...

Im Focus: Cold molecules on collision course

Using a new cooling technique MPQ scientists succeed at observing collisions in a dense beam of cold and slow dipolar molecules.

How do chemical reactions proceed at extremely low temperatures? The answer requires the investigation of molecular samples that are cold, dense, and slow at...

Im Focus: Shrinking the proton again!

Scientists from the Max Planck Institute of Quantum Optics, using high precision laser spectroscopy of atomic hydrogen, confirm the surprisingly small value of the proton radius determined from muonic hydrogen.

It was one of the breakthroughs of the year 2010: Laser spectroscopy of muonic hydrogen resulted in a value for the proton charge radius that was significantly...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

ASEAN Member States discuss the future role of renewable energy

17.10.2017 | Event News

World Health Summit 2017: International experts set the course for the future of Global Health

10.10.2017 | Event News

Climate Engineering Conference 2017 Opens in Berlin

10.10.2017 | Event News

 
Latest News

Terahertz spectroscopy goes nano

20.10.2017 | Information Technology

Strange but true: Turning a material upside down can sometimes make it softer

20.10.2017 | Materials Sciences

NRL clarifies valley polarization for electronic and optoelectronic technologies

20.10.2017 | Interdisciplinary Research

VideoLinks
B2B-VideoLinks
More VideoLinks >>>