Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Bio-inspired microlens arrays

06.03.2012
The University of Konstanz, the Max-Planck-Institute of Colloids and Interfaces and two Korean institutes develop a natural process for the synthesis of microlens arrays

The development of highly complex microlens arrays via the natural way and with remarkably simple components: Chemists of the University of Konstanz and the Max-Planck-Institute of Colloids and Interfaces have developed a process which highly simplifies the production of microlens arrays. Based on calcium carbonate (chalk), the researchers generate naturally grown surface layers with an ordered position of micrometer sized half spherical chalk lenses.

So far, micro lens arrays could only be generated with a sophisticated lithographic process on basis of plastics. The development of the new synthesis process was achieved in cooperation with the Korea Institute of Geoscience and Mineral Resources and the South Korean university KAIST.

For the generation of the optically fully functional microlens arrays, the researchers exclusively need a saturated calcium solution, carbon dioxide from air and a broadly available surfactant (a soap molecule), which regulates the formation of the microlens structure. The process is by far more cost effective and simple than existing production methods. „It is remarkable that structure formation occurs by itself in water at room temperature – completely similar to the archetype Nature. This is an example for the successful application of biological principles for the generation of advanced optical elements completely without use of energy or toxic chemicals“, summarises Konstanz chemist Prof. Dr. Helmut Cölfen the advantages. The new process in which the micro lens arrays equally “grow” in a natural way was developed starting from a natural archetype: The so-called brittlestar, a relative of the starfish, uses a chalk microlens array on its skin to change colour according to the lighting conditions.

A microlens array is an optical field with a large number of micrometer sized miniature lenses placed closely together. Microlens arrays are applied for miniaturisation of optical systems, focussing of light with a precision of a millionth meter and to work with very small wavelengths. Amongst other applications, microlens arrays are applied for cell phone cameras but also in medical technology. The new process is also suitable to generate anti-reflex coatings, which are for example known from eyeglasses. Further advantages of the new method are that the chalk lens systems have shorter focal lengths compared to the so far exisiting plastic lens arrays and that the lens systems can be transferred to other surfaces by a simple dip coating. Furthermore, living cells like the microlens surface which enables future biomedical research combined with optics.

„It is truly remarkable how simple the generation of the microlens arrays is: All applied materials are common and biocompatible chemicals, energy supply is not necessary. The reaction takes place at room temperature in water according to a principle which Nature uses for Biominerals“, explains Helmut Cölfen. „Beside all these technical advantages, the amazing fact that such highly complex structures like a microlens array can be generated using comparatively simple molecules makes this process highly interesting for the scientist“, Cölfen outlines further perspectives for science.

http://www.pi.uni-konstanz.de/2012/031.jpg
"Microlens array based on chalk"
Kyu-Bock Lee, Max-Planck-Institute of Colloids and Interfaces
Contact:
University of Konstanz
Communications and Marketing
Phone: ++49 7531 / 88-3603
E-Mail: kum@uni-konstanz.de
Prof. Dr. Helmut Cölfen
University of Konstanz
Physical Chemistry
Universitätsstraße 10
78464 Konstanz, Germany
Phone: ++49 7531 / 88-4063
E-Mail: Helmut.Coelfen@uni-konstanz.de

Julia Wandt | idw
Further information:
http://www.uni-konstanz.de
http://cms.uni-konstanz.de/coelfen

More articles from Physics and Astronomy:

nachricht Study offers new theoretical approach to describing non-equilibrium phase transitions
27.04.2017 | DOE/Argonne National Laboratory

nachricht SwRI-led team discovers lull in Mars' giant impact history
26.04.2017 | Southwest Research Institute

All articles from Physics and Astronomy >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Making lightweight construction suitable for series production

More and more automobile companies are focusing on body parts made of carbon fiber reinforced plastics (CFRP). However, manufacturing and repair costs must be further reduced in order to make CFRP more economical in use. Together with the Volkswagen AG and five other partners in the project HolQueSt 3D, the Laser Zentrum Hannover e.V. (LZH) has developed laser processes for the automatic trimming, drilling and repair of three-dimensional components.

Automated manufacturing processes are the basis for ultimately establishing the series production of CFRP components. In the project HolQueSt 3D, the LZH has...

Im Focus: Wonder material? Novel nanotube structure strengthens thin films for flexible electronics

Reflecting the structure of composites found in nature and the ancient world, researchers at the University of Illinois at Urbana-Champaign have synthesized thin carbon nanotube (CNT) textiles that exhibit both high electrical conductivity and a level of toughness that is about fifty times higher than copper films, currently used in electronics.

"The structural robustness of thin metal films has significant importance for the reliable operation of smart skin and flexible electronics including...

Im Focus: Deep inside Galaxy M87

The nearby, giant radio galaxy M87 hosts a supermassive black hole (BH) and is well-known for its bright jet dominating the spectrum over ten orders of magnitude in frequency. Due to its proximity, jet prominence, and the large black hole mass, M87 is the best laboratory for investigating the formation, acceleration, and collimation of relativistic jets. A research team led by Silke Britzen from the Max Planck Institute for Radio Astronomy in Bonn, Germany, has found strong indication for turbulent processes connecting the accretion disk and the jet of that galaxy providing insights into the longstanding problem of the origin of astrophysical jets.

Supermassive black holes form some of the most enigmatic phenomena in astrophysics. Their enormous energy output is supposed to be generated by the...

Im Focus: A Quantum Low Pass for Photons

Physicists in Garching observe novel quantum effect that limits the number of emitted photons.

The probability to find a certain number of photons inside a laser pulse usually corresponds to a classical distribution of independent events, the so-called...

Im Focus: Microprocessors based on a layer of just three atoms

Microprocessors based on atomically thin materials hold the promise of the evolution of traditional processors as well as new applications in the field of flexible electronics. Now, a TU Wien research team led by Thomas Müller has made a breakthrough in this field as part of an ongoing research project.

Two-dimensional materials, or 2D materials for short, are extremely versatile, although – or often more precisely because – they are made up of just one or a...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Fighting drug resistant tuberculosis – InfectoGnostics meets MYCO-NET² partners in Peru

28.04.2017 | Event News

Expert meeting “Health Business Connect” will connect international medical technology companies

20.04.2017 | Event News

Wenn der Computer das Gehirn austrickst

18.04.2017 | Event News

 
Latest News

Wireless power can drive tiny electronic devices in the GI tract

28.04.2017 | Medical Engineering

Ice cave in Transylvania yields window into region's past

28.04.2017 | Earth Sciences

Nose2Brain – Better Therapy for Multiple Sclerosis

28.04.2017 | Life Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>