Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:


Berkeley researchers create first hyperlens for sound waves

Ultrasound and underwater sonar devices could "see" a big improvement thanks to development of the world's first acoustic hyperlens.

Created by researchers with the U.S. Department of Energy's Lawrence Berkeley National Laboratory (Berkeley Lab), the acoustic hyperlens provides an eightfold boost in the magnification power of sound-based imaging technologies.

Clever physical manipulation of the imaging sound waves enables the hyperlens to resolve details smaller than one sixth the length of the waves themselves, bringing into view much smaller objects and features than can be detected using today's technologies.

The key to this success is the capturing of information contained in evanescent waves, which carry far more details and higher resolution than propagating waves but are typically bound to the vicinity of the source and decay much too quickly to be captured by a conventional lens.

"We have successfully carried out an experimental demonstration of an acoustic hyperlens that magnifies sub-wavelength objects by gradually converting evanescent waves into propagating waves," said Xiang Zhang, a principal investigator with Berkeley Lab's Materials Sciences Division and director of the Nano-scale Science and Engineering Center at the University of California, Berkeley. "Our acoustic hyperlens relies on straightforward cutoff-free propagation and achieves deep subwavelength resolution with low loss over a broad frequency bandwidth."

Zhang is the corresponding author on a paper reporting this research in the journal Nature Materials. The paper is entitled, "Experimental Demonstration of an Acoustic Magnifying Hyperlens." Co-authoring this paper with Zhang were Jensen Li, Lee Fok, Xiaobo Yin and Guy Bartal.

Zhang and his co-authors fashioned their acoustic hyperlens from 36 brass fins arranged in the shape of a hand-held fan. Each fin is approximately 20 centimeters long and three millimeters thick. The fins, embedded in the brass plate from which they were milled, extend out from an inner radius of 2.7 centimeters to an outer radius of 21.8 centimeters, and span 180 degrees in the angular direction.

"As a result of the large ratio between the inner and outer radii, our acoustic hyperlens compresses a significant portion of evanescent waves into the band of propagating waves so that the image obtained is magnified by a factor of eight," says co-author Fok, a graduate student in Zhang's lab. "We chose brass as the material for the fins because it has a density about 7,000 times that of air, a large ratio that is needed to achieve the strong anisotropy required for a flat dispersion of the sound waves."


In the world of optical imaging, hyperlensing is enjoying a hyper rage. Fabricated from metamaterials - composites of metals and dielectrics whose uniquely engineered structures give rise to extraordinary optical properties - hyperlenses make it possible to overcome the so-called "diffraction limit" by imaging features that are significantly smaller than the wavelengths of incident light. Zhang called the capturing of information carried by evanescent waves "the Holy Grail of optical information" in 2007, when he and his research group announced a hyperlens made from nanowires of silver and aluminum oxide that was able to use visible light to image objects smaller than 150 nanometers, well below visible light's diffraction limit of 260 nanometers.

Sound waves are also hampered by an intrinsic diffraction limit when deployed for imaging purposes - objects that can be seen with conventional acoustic imaging are limited by the length of the sound wave. Once again, Zhang and his colleagues have overcome this diffraction limit by employing carefully engineered wave dispersion surfaces. This time they've demonstrated the first broad-band low-loss imaging with large magnification, where evanescent waves carrying information about subwavelength features are gradually converted into propagating waves.

"We provide a paradigm on the design and use of metamaterials to manipulate sound waves down to subwavelength scales," says co-author Li, a former post doctoral fellow in Zhang's group and now an assistant professor in City University of Hong Kong. "The success of our simple metamaterial design opens further possibilities in manipulating sound waves, particularly in transformation acoustics, which is analogous to transformation optics. Curved coordinate mappings could also be used to design novel acoustic devices such as a hyperlens with flat input and output facets."

The current version of their acoustic hyperlens successfully produced 2-D images of objects down to 6.7 times smaller than the wavelength of the imaging sound wave. Now Zhang and his team are up-grading their technique to produced 3-D images. They are also working to make their acoustic hyperlens compatible with pulse-echo technology, which is the basis of both medical ultrasounds and underwater sonar imaging systems.

"Directly applied to current ultrasound pulse-echo technology, the hyperlens would allow the use of lower input frequency, which in turn would increase the penetration depth and allow physicians to see, for example, smaller tumors or finer features of larger objects that could help them identify other abnormalities," Zhang says.

Acoustic hyperlens could be applied to underwater sonar as a focusing device that would allow more complex and precise custom waveforms to be created while still maintaining the power of the propagating source.

Support for this research came from the Office of Naval Research.

Berkeley Lab is a U.S. Department of Energy national laboratory located in Berkeley, California. It conducts unclassified scientific research for DOE's Office of Science and is managed by the University of California.

Lynn Yarris | EurekAlert!
Further information:

More articles from Physics and Astronomy:

nachricht Sharpening the X-ray view of the nanocosm
23.03.2018 | Changchun Institute of Optics, Fine Mechanics and Physics

nachricht Drug or duplicate?
23.03.2018 | Fraunhofer-Institut für Angewandte Festkörperphysik IAF

All articles from Physics and Astronomy >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Space observation with radar to secure Germany's space infrastructure

Satellites in near-Earth orbit are at risk due to the steady increase in space debris. But their mission in the areas of telecommunications, navigation or weather forecasts is essential for society. Fraunhofer FHR therefore develops radar-based systems which allow the detection, tracking and cataloging of even the smallest particles of debris. Satellite operators who have access to our data are in a better position to plan evasive maneuvers and prevent destructive collisions. From April, 25-29 2018, Fraunhofer FHR and its partners will exhibit the complementary radar systems TIRA and GESTRA as well as the latest radar techniques for space observation across three stands at the ILA Berlin.

The "traffic situation" in space is very tense: the Earth is currently being orbited not only by countless satellites but also by a large volume of space...

Im Focus: Researchers Discover New Anti-Cancer Protein

An international team of researchers has discovered a new anti-cancer protein. The protein, called LHPP, prevents the uncontrolled proliferation of cancer cells in the liver. The researchers led by Prof. Michael N. Hall from the Biozentrum, University of Basel, report in “Nature” that LHPP can also serve as a biomarker for the diagnosis and prognosis of liver cancer.

The incidence of liver cancer, also known as hepatocellular carcinoma, is steadily increasing. In the last twenty years, the number of cases has almost doubled...

Im Focus: Researchers at Fraunhofer monitor re-entry of Chinese space station Tiangong-1

In just a few weeks from now, the Chinese space station Tiangong-1 will re-enter the Earth's atmosphere where it will to a large extent burn up. It is possible that some debris will reach the Earth's surface. Tiangong-1 is orbiting the Earth uncontrolled at a speed of approx. 29,000 km/h.Currently the prognosis relating to the time of impact currently lies within a window of several days. The scientists at Fraunhofer FHR have already been monitoring Tiangong-1 for a number of weeks with their TIRA system, one of the most powerful space observation radars in the world, with a view to supporting the German Space Situational Awareness Center and the ESA with their re-entry forecasts.

Following the loss of radio contact with Tiangong-1 in 2016 and due to the low orbital height, it is now inevitable that the Chinese space station will...

Im Focus: Alliance „OLED Licht Forum“ – Key partner for OLED lighting solutions

Fraunhofer Institute for Organic Electronics, Electron Beam and Plasma Technology FEP, provider of research and development services for OLED lighting solutions, announces the founding of the “OLED Licht Forum” and presents latest OLED design and lighting solutions during light+building, from March 18th – 23rd, 2018 in Frankfurt a.M./Germany, at booth no. F91 in Hall 4.0.

They are united in their passion for OLED (organic light emitting diodes) lighting with all of its unique facets and application possibilities. Thus experts in...

Im Focus: Mars' oceans formed early, possibly aided by massive volcanic eruptions

Oceans formed before Tharsis and evolved together, shaping climate history of Mars

A new scenario seeking to explain how Mars' putative oceans came and went over the last 4 billion years implies that the oceans formed several hundred million...

All Focus news of the innovation-report >>>



Industry & Economy
Event News

New solar solutions for sustainable buildings and cities

23.03.2018 | Event News

Virtual reality conference comes to Reutlingen

19.03.2018 | Event News

Ultrafast Wireless and Chip Design at the DATE Conference in Dresden

16.03.2018 | Event News

Latest News

For graphite pellets, just add elbow grease

23.03.2018 | Materials Sciences

Unique communication strategy discovered in stem cell pathway controlling plant growth

23.03.2018 | Agricultural and Forestry Science

Sharpening the X-ray view of the nanocosm

23.03.2018 | Physics and Astronomy

Science & Research
Overview of more VideoLinks >>>