Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Beaming New Light on Life: Silver Nanoparticle Microscopy

06.02.2009
University of Utah physicists and chemists developed a new method that uses a mirror of tiny silver “nanoparticles” so microscopes can reveal the internal structure of nearly opaque biological materials like bone, tumor cells and the iridescent green scales of the so-called “photonic beetle.”

The method also might be used for detecting fatigue in materials such as carbon-fiber plastics used to build the latest generation of aircraft fuselages, tails and wings, says John Lupton, an associate professor of physics and leader of the new study.

The study will be published online Feb. 5 and in the March 2009 issue of Nano Letters, the leading nanoscience journal of the American Chemical Society. Nanoscience is the study of ultrasmall materials, structures or devices on a molecular or atomic scale.

The researchers are seeking a patent on the new method.

Lupton conducted the new study with Michael Bartl, an assistant professor of chemistry; Debansu Chaudhuri, a postdoctoral researcher in physics; and graduate students Jeremy Galusha in chemistry and Manfred Walter and Nicholas Borys in physics.

From the invention of the optical microscope in the 17th century, microscopy has grown to the point where there are scores of different methods available.

In an optical microscope, white light is passed through a specimen to view it. But the method is limited in how much detail and contrast can be seen within the specimen.

Electron microscopes can view tiny structures, but they are expensive, not always readily available and cannot be used on all types of samples, Lupton says.

A widely used method is known as laser or fluorescence microscopy, in which a laser is used to make a specimen emit light, either because the specimen does so naturally or because it has been injected or “labeled” with fluorescent dye. The trouble is that such dyes – when excited by laser light – generate toxic chemicals that kill living cells.

“It would be much better to place the cell, without any labels, on top of metal nanoparticles and measure the transmission of light,” Lupton says.

The new method developed by Lupton and colleagues is a variation of fluorescence microscopy, but involves using an infrared laser to excite clusters of silver nanoparticles placed below the sample being studied. The particles form “plasmonic hotspots,” which act as beacons, shooting intensely focused white light upward through the overlying sample.

The spectrum or colors of transmitted light reveal information about the composition and structure of the substance examined.

The Photonic Beetle Meets the Microscope

Development of the new method began after Bartl, Galusha and others published a study last May revealing that a beetle from Brazil – a weevil named Lamprocyphus augustus – has shimmering green scales with an ideal “photonic crystal” structure.

Scientists thus far have been unable to build an ideal photonic crystal to manipulate visible light – something they say is necessary to develop ultrafast optical computers that would run on light instead of electricity.

Ideal photonic crystals also are sought as a way to make solar power cells more efficient, catalyze chemical reactions and generate tiny laser beams that would serve as light sources on optical computer chips.

But first, researchers want to know more about the naturally occurring photonic crystals within the beetle’s scales.

“A normal light microscope generally won't do the trick,” Lupton says, because visible light is easily scattered by the scales, thwarting efforts to view their internal structure.

“We found that we can put silver nanoparticles – a fancy word for a silver mirror – beneath the beetle,” he adds. “When illuminated with very intense infrared light, the silver starts to emit white light, but only at very discrete positions on the mirror.”

Those “beacons” of intense light were transmitted upward through the beetle scale, allowing scientists to view the scale’s internal structure, including tiny differences in the angles of crystal “facets” or faces and the existence of vertical stacks of crystals invisible to other microscope methods.

To the untrained eye, an image created using silver nanoparticle beacons – say, the image of the photonic beetle’s scale – looks like a blotchy bunch of spots.

But Lupton says that each of those spots contains a spectrum of colors that reveal information about the scale’s internal structure because the light has interacted with that structure.

A New Tool for Biologists, Doctors and Maybe Materials Scientists

“There really does not appear to be any other useful technique to look at these natural photonic crystals microscopically,” Lupton says. “The silver nanoparticle approach to microscopy potentially could be very versatile, allowing us to view other highly scattering samples such as tumor cells, bone samples or amorphous materials in general.” Amorphous materials are those without a crystal structure.

While Lupton believes the new method will be of interest mainly to biologists, he also says it could be useful for materials science.

For example, silver nanoparticles could be embedded in the carbon-fiber plastic in modern aircraft. The integrity of the fuselage or other aircraft components could be inspected regularly by exciting the embedded particles with a laser, and measuring how much light from the particles is transmitted through the fuselage material. Changes in transmission of the light would indicate changes in the fuselage structure, a warning that closer inspections of fuselage integrity are required.

So why does the new method work?

Lupton says the structure within the beetle’s scales scatters light very strongly, like driving through a snowstorm: “Once your windshield gets wet, headlights appear all fuzzy, and different features get mixed up.”

Using the tiny silver nanoparticles as light sources to see crystal structure within the beetle’s scale is like “peering through your smudged windshield at a tiny white spot,” Lupton adds. “It would not appear smeared out.”

Contacts:
-- John Lupton, associate professor of physics – office (801) 581-6408, lupton@physics.utah.edu

Lee Siegel | Newswise Science News
Further information:
http://www.utah.edu

More articles from Physics and Astronomy:

nachricht Breakthrough with a chain of gold atoms
17.02.2017 | Universität Konstanz

nachricht New functional principle to generate the „third harmonic“
16.02.2017 | Laser Zentrum Hannover e.V.

All articles from Physics and Astronomy >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Breakthrough with a chain of gold atoms

In the field of nanoscience, an international team of physicists with participants from Konstanz has achieved a breakthrough in understanding heat transport

In the field of nanoscience, an international team of physicists with participants from Konstanz has achieved a breakthrough in understanding heat transport

Im Focus: DNA repair: a new letter in the cell alphabet

Results reveal how discoveries may be hidden in scientific “blind spots”

Cells need to repair damaged DNA in our genes to prevent the development of cancer and other diseases. Our cells therefore activate and send “repair-proteins”...

Im Focus: Dresdner scientists print tomorrow’s world

The Fraunhofer IWS Dresden and Technische Universität Dresden inaugurated their jointly operated Center for Additive Manufacturing Dresden (AMCD) with a festive ceremony on February 7, 2017. Scientists from various disciplines perform research on materials, additive manufacturing processes and innovative technologies, which build up components in a layer by layer process. This technology opens up new horizons for component design and combinations of functions. For example during fabrication, electrical conductors and sensors are already able to be additively manufactured into components. They provide information about stress conditions of a product during operation.

The 3D-printing technology, or additive manufacturing as it is often called, has long made the step out of scientific research laboratories into industrial...

Im Focus: Mimicking nature's cellular architectures via 3-D printing

Research offers new level of control over the structure of 3-D printed materials

Nature does amazing things with limited design materials. Grass, for example, can support its own weight, resist strong wind loads, and recover after being...

Im Focus: Three Magnetic States for Each Hole

Nanometer-scale magnetic perforated grids could create new possibilities for computing. Together with international colleagues, scientists from the Helmholtz Zentrum Dresden-Rossendorf (HZDR) have shown how a cobalt grid can be reliably programmed at room temperature. In addition they discovered that for every hole ("antidot") three magnetic states can be configured. The results have been published in the journal "Scientific Reports".

Physicist Dr. Rantej Bali from the HZDR, together with scientists from Singapore and Australia, designed a special grid structure in a thin layer of cobalt in...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Booth and panel discussion – The Lindau Nobel Laureate Meetings at the AAAS 2017 Annual Meeting

13.02.2017 | Event News

Complex Loading versus Hidden Reserves

10.02.2017 | Event News

International Conference on Crystal Growth in Freiburg

09.02.2017 | Event News

 
Latest News

Switched-on DNA

20.02.2017 | Materials Sciences

Second cause of hidden hearing loss identified

20.02.2017 | Health and Medicine

Prospect for more effective treatment of nerve pain

20.02.2017 | Health and Medicine

VideoLinks
B2B-VideoLinks
More VideoLinks >>>