Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Astronomers Witness a Star Being Born

18.06.2010
Astronomers have glimpsed what could be the youngest known star at the very moment it is being born. Not yet fully developed into a true star, the object is in the earliest stages of star formation and has just begun pulling in matter from a surrounding envelope of gas and dust, according to a new study that appears in the current issue of the Astrophysical Journal.

The study’s authors—who include astronomers from Yale University, the Harvard-Smithsonian Center for Astrophysics and the Max Planck Institute for Astronomy in Germany—found the object using the Submillimeter Array in Hawaii and the Spitzer Space Telescope. Known as L1448-IRS2E, it’s located in the Perseus star-forming region, about 800 light years away within our Milky Way galaxy.

Stars form out of large, cold, dense regions of gas and dust called molecular clouds, which exist throughout the galaxy. Astronomers think L1448-IRS2E is in between the prestellar phase, when a particularly dense region of a molecular cloud first begins to clump together, and the protostar phase, when gravity has pulled enough material together to form a dense, hot core out of the surrounding envelope.

“It’s very difficult to detect objects in this phase of star formation, because they are very short-lived and they emit very little light,” said Xuepeng Chen, a postdoctoral associate at Yale and lead author of the paper. The team detected the faint light emitted by the dust surrounding the object.

Most protostars are between one to 10 times as luminous as the Sun, with large dust envelopes that glow at infrared wavelengths. Because L1448-IRS2E is less than one tenth as luminous as the Sun, the team believes the object is too dim to be considered a true protostar. Yet they also discovered that the object is ejecting streams of high-velocity gas from its center, confirming that some sort of preliminary mass has already formed and the object has developed beyond the prestellar phase. This kind of outflow is seen in protostars (as a result of the magnetic field surrounding the forming star), but has not been seen at such an early stage until now.

The team hopes to use the new Herchel space telescope, launched last May, to look for more of these objects caught between the earliest stages of star formation so they can better understand how stars grow and evolve. “Stars are defined by their mass, but we still don’t know at what stage of the formation process a star acquires most of its mass,” said Héctor Arce, assistant professor of astronomy at Yale and an author of the paper. “This is one of the big questions driving our work.”

Other authors of the paper include Qizhou Zhang and Tyler Bourke of the Harvard-Smithsonian Center for Astrophysics; and Ralf Launhardt, Markus Schmalzl and Thomas Henning of the Max Planck Institute for Astronomy.

DOI: 10.1088/0004-637X/715/2/1344

Suzanne Taylor Muzzin | EurekAlert!
Further information:
http://www.yale.edu

More articles from Physics and Astronomy:

nachricht NASA spacecraft investigate clues in radiation belts
28.03.2017 | NASA/Goddard Space Flight Center

nachricht Researchers create artificial materials atom-by-atom
28.03.2017 | Aalto University

All articles from Physics and Astronomy >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: A Challenging European Research Project to Develop New Tiny Microscopes

The Institute of Semiconductor Technology and the Institute of Physical and Theoretical Chemistry, both members of the Laboratory for Emerging Nanometrology (LENA), at Technische Universität Braunschweig are partners in a new European research project entitled ChipScope, which aims to develop a completely new and extremely small optical microscope capable of observing the interior of living cells in real time. A consortium of 7 partners from 5 countries will tackle this issue with very ambitious objectives during a four-year research program.

To demonstrate the usefulness of this new scientific tool, at the end of the project the developed chip-sized microscope will be used to observe in real-time...

Im Focus: Giant Magnetic Fields in the Universe

Astronomers from Bonn and Tautenburg in Thuringia (Germany) used the 100-m radio telescope at Effelsberg to observe several galaxy clusters. At the edges of these large accumulations of dark matter, stellar systems (galaxies), hot gas, and charged particles, they found magnetic fields that are exceptionally ordered over distances of many million light years. This makes them the most extended magnetic fields in the universe known so far.

The results will be published on March 22 in the journal „Astronomy & Astrophysics“.

Galaxy clusters are the largest gravitationally bound structures in the universe. With a typical extent of about 10 million light years, i.e. 100 times the...

Im Focus: Tracing down linear ubiquitination

Researchers at the Goethe University Frankfurt, together with partners from the University of Tübingen in Germany and Queen Mary University as well as Francis Crick Institute from London (UK) have developed a novel technology to decipher the secret ubiquitin code.

Ubiquitin is a small protein that can be linked to other cellular proteins, thereby controlling and modulating their functions. The attachment occurs in many...

Im Focus: Perovskite edges can be tuned for optoelectronic performance

Layered 2D material improves efficiency for solar cells and LEDs

In the eternal search for next generation high-efficiency solar cells and LEDs, scientists at Los Alamos National Laboratory and their partners are creating...

Im Focus: Polymer-coated silicon nanosheets as alternative to graphene: A perfect team for nanoelectronics

Silicon nanosheets are thin, two-dimensional layers with exceptional optoelectronic properties very similar to those of graphene. Albeit, the nanosheets are less stable. Now researchers at the Technical University of Munich (TUM) have, for the first time ever, produced a composite material combining silicon nanosheets and a polymer that is both UV-resistant and easy to process. This brings the scientists a significant step closer to industrial applications like flexible displays and photosensors.

Silicon nanosheets are thin, two-dimensional layers with exceptional optoelectronic properties very similar to those of graphene. Albeit, the nanosheets are...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

International Land Use Symposium ILUS 2017: Call for Abstracts and Registration open

20.03.2017 | Event News

CONNECT 2017: International congress on connective tissue

14.03.2017 | Event News

ICTM Conference: Turbine Construction between Big Data and Additive Manufacturing

07.03.2017 | Event News

 
Latest News

Transport of molecular motors into cilia

28.03.2017 | Life Sciences

A novel hybrid UAV that may change the way people operate drones

28.03.2017 | Information Technology

NASA spacecraft investigate clues in radiation belts

28.03.2017 | Physics and Astronomy

VideoLinks
B2B-VideoLinks
More VideoLinks >>>