Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:


Astronomers In Search Of Planets Around The Coolest Stars

A team of University of Hertfordshire astronomers led by Dr David Pinfield of the Centre for Astrophysics Research is leading a major new European collaboration to search for and study planets around other stars (extra-solar planets).

Funded with £2.75 million from the European Commission, this research and technology network will focus on the search for rocky planets around cool stars and the development of future space-based technology to study extra-solar planets.

Cool stars are much fainter than the Sun and are thus challenging to study, but they play a major role in astrophysics; they are the most common type of star in our Galaxy.

"This fast moving field is at the forefront of modern astrophysics, and is moving towards a goal of discovering terrestrial planets like the Earth around stars other than the Sun," said Dr Pinfield. "Learning about the diverse range of planetary systems that exist around other stars allows us to better understand our own place in the universe, and will reveal the extent of possible habitats for life elsewhere."

The project is built on the team’s international collaboration with leading research institutes in the UK (UH and Cambridge), Spain (Canary Islands and Madrid), Germany (Munich) and Ukraine (Kiev), and the space engineering company Astrium (based in Stevenage).

Over its four year life-time (Dec 2008 – Nov 2012) the project will employ fifteen young doctoral and postdoctoral researchers to carry out new research, work with industry on technology development, and receive training through a range of science and technology activities.

The network will specifically pursue extra-solar planets that transit (pass in-front of their host star during their orbit) - currently an extremely active area of astronomy. For cool stars this technique is sensitive to smaller planets that could be warm rocky worlds.

By exploiting new survey facilities that are being led by Dr Pinfield and his network, they aim to improve their understanding of the broad nature of extra-solar planet populations, and explore new extra-solar planet territory around the coolest stars in our galaxy. Intersectorial activities will be carried out jointly at UH and Astrium, and will centre on the European Space Agency's Cosmic Vision 2015-2025 programme to implement the next generation of space-based observatories.

“The project will thus be looking to the future as well as focussing on the ongoing search for and study of planets around other stars,” Dr Pinfield added.

Helene Murphy | alfa
Further information:

More articles from Physics and Astronomy:

nachricht OU-led team discovers rare, newborn tri-star system using ALMA
27.10.2016 | University of Oklahoma

nachricht First results of NSTX-U research operations
26.10.2016 | DOE/Princeton Plasma Physics Laboratory

All articles from Physics and Astronomy >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Etching Microstructures with Lasers

Ultrafast lasers have introduced new possibilities in engraving ultrafine structures, and scientists are now also investigating how to use them to etch microstructures into thin glass. There are possible applications in analytics (lab on a chip) and especially in electronics and the consumer sector, where great interest has been shown.

This new method was born of a surprising phenomenon: irradiating glass in a particular way with an ultrafast laser has the effect of making the glass up to a...

Im Focus: Light-driven atomic rotations excite magnetic waves

Terahertz excitation of selected crystal vibrations leads to an effective magnetic field that drives coherent spin motion

Controlling functional properties by light is one of the grand goals in modern condensed matter physics and materials science. A new study now demonstrates how...

Im Focus: New 3-D wiring technique brings scalable quantum computers closer to reality

Researchers from the Institute for Quantum Computing (IQC) at the University of Waterloo led the development of a new extensible wiring technique capable of controlling superconducting quantum bits, representing a significant step towards to the realization of a scalable quantum computer.

"The quantum socket is a wiring method that uses three-dimensional wires based on spring-loaded pins to address individual qubits," said Jeremy Béjanin, a PhD...

Im Focus: Scientists develop a semiconductor nanocomposite material that moves in response to light

In a paper in Scientific Reports, a research team at Worcester Polytechnic Institute describes a novel light-activated phenomenon that could become the basis for applications as diverse as microscopic robotic grippers and more efficient solar cells.

A research team at Worcester Polytechnic Institute (WPI) has developed a revolutionary, light-activated semiconductor nanocomposite material that can be used...

Im Focus: Diamonds aren't forever: Sandia, Harvard team create first quantum computer bridge

By forcefully embedding two silicon atoms in a diamond matrix, Sandia researchers have demonstrated for the first time on a single chip all the components needed to create a quantum bridge to link quantum computers together.

"People have already built small quantum computers," says Sandia researcher Ryan Camacho. "Maybe the first useful one won't be a single giant quantum computer...

All Focus news of the innovation-report >>>



Event News

#IC2S2: When Social Science meets Computer Science - GESIS will host the IC2S2 conference 2017

14.10.2016 | Event News

Agricultural Trade Developments and Potentials in Central Asia and the South Caucasus

14.10.2016 | Event News

World Health Summit – Day Three: A Call to Action

12.10.2016 | Event News

Latest News

How nanoscience will improve our health and lives in the coming years

27.10.2016 | Materials Sciences

OU-led team discovers rare, newborn tri-star system using ALMA

27.10.2016 | Physics and Astronomy

'Neighbor maps' reveal the genome's 3-D shape

27.10.2016 | Life Sciences

More VideoLinks >>>