Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Astronomers Find Hyperactive Galaxies in the Early Universe

06.08.2009
Looking almost 11 billion years into the past, astronomers have measured the motions of stars for the first time in a very distant galaxy and clocked speeds upwards of one million miles per hour, about twice the speed of our Sun through the Milky Way.

The fast-moving stars shed new light on how these distant galaxies, which are a fraction the size of our Milky Way, may have evolved into the full-grown galaxies seen around us today. The results will be published in the August 6, 2009 issue of the journal Nature, with a companion paper in the Astrophysical Journal.

"This galaxy is very small, but the stars are whizzing around as if they were in a giant galaxy that we would find closer to us and not so far back in time," says Pieter van Dokkum, professor of astronomy and physics at Yale University in New Haven, Conn., who led the study. It is still not understood how galaxies like these, with so much mass in such a small volume, can form in the early universe and then evolve into the galaxies we see in the more contemporary, nearby universe, which is about 13.7 billion years old.

The work by the international team combined data collected using NASA's Hubble Space Telescope with observations taken by the 8-meter Gemini South telescope in Chile. According to van Dokkum, "The Hubble data, taken in 2007, confirmed that this galaxy was a fraction the size of most galaxies we see today in the more evolved, older universe. The giant 8-meter mirror of the Gemini telescope then allowed us to collect enough light to determine the overall motions of the stars using a technique not very different from the way police use laser light to catch speeding cars." The Gemini near-infrared spectroscopic observations required an extensive 29 hours on the sky to collect the extremely faint light from the distant galaxy, which goes by the designation 1255-0.

"By looking at this galaxy we are able to look back in time and see what galaxies looked like in the distant past when the universe was very young," says team member Mariska Kriek of Princeton University in Princeton, N.J. 1255-0 is so far away that the universe was only about 3 billion years old when its light was emitted.

Astronomers confess that it is a difficult riddle to explain how such compact, massive galaxies form, and why they are not seen in the current, local universe. "One possibility is that we are looking at what will eventually be the dense central region of a very large galaxy," explains team member Marijn Franx of Leiden University in the Netherlands. "The centers of big galaxies may have formed first, presumably together with the giant black holes that we know exist in today's large galaxies that we see nearby."

To witness the formation of these extreme galaxies astronomers plan to observe galaxies even farther back in time in great detail. By using the Wide Field Camera 3, which was recently installed on the Hubble Space Telescope, such objects should be detectable. "The ancestors of these extreme galaxies should have quite spectacular properties as they probably formed a huge amount of stars, in addition to a massive black hole, in a relatively short amount of time," says van Dokkum.

This research follows recent studies revealing that the oldest, most luminous galaxies in the early universe are very compact yet surprisingly have stellar masses similar to those of present-day elliptical galaxies. The most massive galaxies we see in the local universe (where we don't look back in time significantly) that have a mass similar to 1255-0 are typically five times larger than the young compact galaxy. How galaxies grew so much in the past 10 billion years is an active area of research, and understanding the dynamics in these young compact galaxies is a key piece of evidence in eventually solving this puzzle.

The Hubble Space Telescope observations were made with the Near Infrared Camera and Multi-Object Spectrometer (NICMOS).

The Gemini observations were made using the Gemini Near Infrared Spectrograph (GNIRS), which is currently undergoing upgrades and will be reinstalled on the Gemini North telescope on Mauna Kea in 2010.

The Hubble Space Telescope is a project of international cooperation between NASA and the European Space Agency (ESA) and is managed by NASA's Goddard Space Flight Center (GSFC) in Greenbelt, Md. The Space Telescope Science Institute (STScI) conducts Hubble science operations. The institute is operated for NASA by the Association of Universities for Research in Astronomy, Inc., Washington, D.C. STScI is an International Year of Astronomy 2009 (IYA 2009) program partner.

The Gemini Observatory is an international collaboration with two identical 8-meter telescopes (The Frederick C. Gillett Gemini Telescope, located at Mauna Kea, Hawaii (Gemini North) and the other telescope at Cerro Pachon in central Chile (Gemini South)). The national research agencies that form the Gemini partnership include the US National Science Foundation (NSF), the UK Science and Technology Facilities Council (STFC), the Canadian National Research Council (NRC), the Chilean National Commission for Scientific and Technological Research (CONICYT), the Australian Research Council (ARC), the Argentinean National Scientific and Technical Research Council (CONICET), and the Brazilian National Council for Scientific and Technological Development (CNPq). The observatory is managed by the Association of Universities for Research in Astronomy, Inc. (AURA) under a cooperative agreement with the NSF. The NSF also serves as the executive agency for the international partnership.

Ray Villard | Newswise Science News
Further information:
http://www.stsci.edu
http://hubblesite.org/news/2009/24
http://www.gemini.edu

More articles from Physics and Astronomy:

nachricht Scientists propose synestia, a new type of planetary object
23.05.2017 | University of California - Davis

nachricht Turmoil in sluggish electrons’ existence
23.05.2017 | Max-Planck-Institut für Quantenoptik

All articles from Physics and Astronomy >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Turmoil in sluggish electrons’ existence

An international team of physicists has monitored the scattering behaviour of electrons in a non-conducting material in real-time. Their insights could be beneficial for radiotherapy.

We can refer to electrons in non-conducting materials as ‘sluggish’. Typically, they remain fixed in a location, deep inside an atomic composite. It is hence...

Im Focus: Wafer-thin Magnetic Materials Developed for Future Quantum Technologies

Two-dimensional magnetic structures are regarded as a promising material for new types of data storage, since the magnetic properties of individual molecular building blocks can be investigated and modified. For the first time, researchers have now produced a wafer-thin ferrimagnet, in which molecules with different magnetic centers arrange themselves on a gold surface to form a checkerboard pattern. Scientists at the Swiss Nanoscience Institute at the University of Basel and the Paul Scherrer Institute published their findings in the journal Nature Communications.

Ferrimagnets are composed of two centers which are magnetized at different strengths and point in opposing directions. Two-dimensional, quasi-flat ferrimagnets...

Im Focus: World's thinnest hologram paves path to new 3-D world

Nano-hologram paves way for integration of 3-D holography into everyday electronics

An Australian-Chinese research team has created the world's thinnest hologram, paving the way towards the integration of 3D holography into everyday...

Im Focus: Using graphene to create quantum bits

In the race to produce a quantum computer, a number of projects are seeking a way to create quantum bits -- or qubits -- that are stable, meaning they are not much affected by changes in their environment. This normally needs highly nonlinear non-dissipative elements capable of functioning at very low temperatures.

In pursuit of this goal, researchers at EPFL's Laboratory of Photonics and Quantum Measurements LPQM (STI/SB), have investigated a nonlinear graphene-based...

Im Focus: Bacteria harness the lotus effect to protect themselves

Biofilms: Researchers find the causes of water-repelling properties

Dental plaque and the viscous brown slime in drainpipes are two familiar examples of bacterial biofilms. Removing such bacterial depositions from surfaces is...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

AWK Aachen Machine Tool Colloquium 2017: Internet of Production for Agile Enterprises

23.05.2017 | Event News

Dortmund MST Conference presents Individualized Healthcare Solutions with micro and nanotechnology

22.05.2017 | Event News

Innovation 4.0: Shaping a humane fourth industrial revolution

17.05.2017 | Event News

 
Latest News

Scientists propose synestia, a new type of planetary object

23.05.2017 | Physics and Astronomy

Zap! Graphene is bad news for bacteria

23.05.2017 | Life Sciences

Medical gamma-ray camera is now palm-sized

23.05.2017 | Medical Engineering

VideoLinks
B2B-VideoLinks
More VideoLinks >>>