Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Astronomers find that galaxies are the ultimate recyclers

22.11.2011
A team of researchers from several universities and institutions, including University of Notre Dame physics faculty Chris Howk and Nicolas Lehner, has demonstrated how galaxies continue to form stars by recycling vast amounts of hydrogen gas and heavy elements across billions of years.

The researchers also identified large masses of previously undetected material surrounding galaxies, and described the large-scale flows of this gas. The results were published in three papers in the Nov. 18 edition of the journal Science.

The leaders of the three studies are Lehner of Notre Dame, Todd Tripp of the University of Massachusetts at Amherst, and Jason Tumlinson of the Space Telescope Science Institute in Baltimore. The researchers used the Cosmic Origins Spectrograph on the Hubble Space Telescope to detect the mass in the halos of the Milky Way and more than 40 other galaxies. The process uses absorption lines in the high-resolution spectra of background quasars or stars to detect the gases in the clouds, which are invisible to other kinds of imaging. Data from the Large Binocular Telescope in Arizona, Keck in Hawaii and the Magellan Telescope in Chile were also key to the studies by measuring the properties of the galaxies.

"We show that not only there is enough mass in the gas flows in halos of galaxies to sustain star formation over billions of years, but also the mass in the hot halos of star-forming galaxies is phenomenal–as large as the mass of gas in the disk of a galaxy," says Lehner.Clouds of ionized hydrogen within 20,000 light years of the Milky Way disk contain enough material to make 100 million suns. About one solar mass of that gas falls into the Milky Way every year, comparable to the rate at which our galaxy makes stars. The cycle could continue for several billion years.

In more distant galaxies, the team found element-rich halos around star-forming galaxies, including surprising levels of heavy elements up to 450,000 light years beyond the visible portion of the galactic disks. The Cosmic Origins Spectrograph measured 10 million solar masses of oxygen in a galaxy's halo, which corresponds to about 1 billion solar masses of gas.

The light of a distant quasar shines through the invisible gaseous halo of a foreground galaxy. Elements in the halo absorb certain frequencies of light. They become detectable, and can be used to measure the halo's mass.

Some of the galaxies that form stars at a very rapid rate, perhaps a hundred solar masses per year, can drive million-degree Fahrenheit gas very far out into intergalactic space at speeds of up to 2 million miles per hour. This is fast enough for the gas to escape forever and never refuel the parent galaxy. "We have observed hot gas in the process of moving out of a galaxy and into intergalactic space," Tripp says.

"Our results confirm a theoretical suspicion that galaxies expel and can recycle their gas, but they also present a fresh challenge to theoretical models to understand these gas flows and integrate them with the overall picture of galaxy formation," Tumlinson says.

Nicolas Lehner | EurekAlert!
Further information:
http://www.nd.edu

More articles from Physics and Astronomy:

nachricht Temperature-controlled fiber-optic light source with liquid core
20.06.2018 | Leibniz-Institut für Photonische Technologien e. V.

nachricht New material for splitting water
19.06.2018 | American Institute of Physics

All articles from Physics and Astronomy >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Temperature-controlled fiber-optic light source with liquid core

In a recent publication in the renowned journal Optica, scientists of Leibniz-Institute of Photonic Technology (Leibniz IPHT) in Jena showed that they can accurately control the optical properties of liquid-core fiber lasers and therefore their spectral band width by temperature and pressure tuning.

Already last year, the researchers provided experimental proof of a new dynamic of hybrid solitons– temporally and spectrally stationary light waves resulting...

Im Focus: Overdosing on Calcium

Nano crystals impact stem cell fate during bone formation

Scientists from the University of Freiburg and the University of Basel identified a master regulator for bone regeneration. Prasad Shastri, Professor of...

Im Focus: AchemAsia 2019 will take place in Shanghai

Moving into its fourth decade, AchemAsia is setting out for new horizons: The International Expo and Innovation Forum for Sustainable Chemical Production will take place from 21-23 May 2019 in Shanghai, China. With an updated event profile, the eleventh edition focusses on topics that are especially relevant for the Chinese process industry, putting a strong emphasis on sustainability and innovation.

Founded in 1989 as a spin-off of ACHEMA to cater to the needs of China’s then developing industry, AchemAsia has since grown into a platform where the latest...

Im Focus: First real-time test of Li-Fi utilization for the industrial Internet of Things

The BMBF-funded OWICELLS project was successfully completed with a final presentation at the BMW plant in Munich. The presentation demonstrated a Li-Fi communication with a mobile robot, while the robot carried out usual production processes (welding, moving and testing parts) in a 5x5m² production cell. The robust, optical wireless transmission is based on spatial diversity; in other words, data is sent and received simultaneously by several LEDs and several photodiodes. The system can transmit data at more than 100 Mbit/s and five milliseconds latency.

Modern production technologies in the automobile industry must become more flexible in order to fulfil individual customer requirements.

Im Focus: Sharp images with flexible fibers

An international team of scientists has discovered a new way to transfer image information through multimodal fibers with almost no distortion - even if the fiber is bent. The results of the study, to which scientist from the Leibniz-Institute of Photonic Technology Jena (Leibniz IPHT) contributed, were published on 6thJune in the highly-cited journal Physical Review Letters.

Endoscopes allow doctors to see into a patient’s body like through a keyhole. Typically, the images are transmitted via a bundle of several hundreds of optical...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

Munich conference on asteroid detection, tracking and defense

13.06.2018 | Event News

2nd International Baltic Earth Conference in Denmark: “The Baltic Sea region in Transition”

08.06.2018 | Event News

ISEKI_Food 2018: Conference with Holistic View of Food Production

05.06.2018 | Event News

 
Latest News

Could this material enable autonomous vehicles to come to market sooner?

20.06.2018 | Materials Sciences

Innovative autonomous system for identifying schools of fish

20.06.2018 | Information Technology

Controlling robots with brainwaves and hand gestures

20.06.2018 | Information Technology

VideoLinks
Science & Research
Overview of more VideoLinks >>>