Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:


Astronomers find that galaxies are the ultimate recyclers

A team of researchers from several universities and institutions, including University of Notre Dame physics faculty Chris Howk and Nicolas Lehner, has demonstrated how galaxies continue to form stars by recycling vast amounts of hydrogen gas and heavy elements across billions of years.

The researchers also identified large masses of previously undetected material surrounding galaxies, and described the large-scale flows of this gas. The results were published in three papers in the Nov. 18 edition of the journal Science.

The leaders of the three studies are Lehner of Notre Dame, Todd Tripp of the University of Massachusetts at Amherst, and Jason Tumlinson of the Space Telescope Science Institute in Baltimore. The researchers used the Cosmic Origins Spectrograph on the Hubble Space Telescope to detect the mass in the halos of the Milky Way and more than 40 other galaxies. The process uses absorption lines in the high-resolution spectra of background quasars or stars to detect the gases in the clouds, which are invisible to other kinds of imaging. Data from the Large Binocular Telescope in Arizona, Keck in Hawaii and the Magellan Telescope in Chile were also key to the studies by measuring the properties of the galaxies.

"We show that not only there is enough mass in the gas flows in halos of galaxies to sustain star formation over billions of years, but also the mass in the hot halos of star-forming galaxies is phenomenal–as large as the mass of gas in the disk of a galaxy," says Lehner.Clouds of ionized hydrogen within 20,000 light years of the Milky Way disk contain enough material to make 100 million suns. About one solar mass of that gas falls into the Milky Way every year, comparable to the rate at which our galaxy makes stars. The cycle could continue for several billion years.

In more distant galaxies, the team found element-rich halos around star-forming galaxies, including surprising levels of heavy elements up to 450,000 light years beyond the visible portion of the galactic disks. The Cosmic Origins Spectrograph measured 10 million solar masses of oxygen in a galaxy's halo, which corresponds to about 1 billion solar masses of gas.

The light of a distant quasar shines through the invisible gaseous halo of a foreground galaxy. Elements in the halo absorb certain frequencies of light. They become detectable, and can be used to measure the halo's mass.

Some of the galaxies that form stars at a very rapid rate, perhaps a hundred solar masses per year, can drive million-degree Fahrenheit gas very far out into intergalactic space at speeds of up to 2 million miles per hour. This is fast enough for the gas to escape forever and never refuel the parent galaxy. "We have observed hot gas in the process of moving out of a galaxy and into intergalactic space," Tripp says.

"Our results confirm a theoretical suspicion that galaxies expel and can recycle their gas, but they also present a fresh challenge to theoretical models to understand these gas flows and integrate them with the overall picture of galaxy formation," Tumlinson says.

Nicolas Lehner | EurekAlert!
Further information:

More articles from Physics and Astronomy:

nachricht First results of NSTX-U research operations
26.10.2016 | DOE/Princeton Plasma Physics Laboratory

nachricht Scientists discover particles similar to Majorana fermions
25.10.2016 | Chinese Academy of Sciences Headquarters

All articles from Physics and Astronomy >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Etching Microstructures with Lasers

Ultrafast lasers have introduced new possibilities in engraving ultrafine structures, and scientists are now also investigating how to use them to etch microstructures into thin glass. There are possible applications in analytics (lab on a chip) and especially in electronics and the consumer sector, where great interest has been shown.

This new method was born of a surprising phenomenon: irradiating glass in a particular way with an ultrafast laser has the effect of making the glass up to a...

Im Focus: Light-driven atomic rotations excite magnetic waves

Terahertz excitation of selected crystal vibrations leads to an effective magnetic field that drives coherent spin motion

Controlling functional properties by light is one of the grand goals in modern condensed matter physics and materials science. A new study now demonstrates how...

Im Focus: New 3-D wiring technique brings scalable quantum computers closer to reality

Researchers from the Institute for Quantum Computing (IQC) at the University of Waterloo led the development of a new extensible wiring technique capable of controlling superconducting quantum bits, representing a significant step towards to the realization of a scalable quantum computer.

"The quantum socket is a wiring method that uses three-dimensional wires based on spring-loaded pins to address individual qubits," said Jeremy Béjanin, a PhD...

Im Focus: Scientists develop a semiconductor nanocomposite material that moves in response to light

In a paper in Scientific Reports, a research team at Worcester Polytechnic Institute describes a novel light-activated phenomenon that could become the basis for applications as diverse as microscopic robotic grippers and more efficient solar cells.

A research team at Worcester Polytechnic Institute (WPI) has developed a revolutionary, light-activated semiconductor nanocomposite material that can be used...

Im Focus: Diamonds aren't forever: Sandia, Harvard team create first quantum computer bridge

By forcefully embedding two silicon atoms in a diamond matrix, Sandia researchers have demonstrated for the first time on a single chip all the components needed to create a quantum bridge to link quantum computers together.

"People have already built small quantum computers," says Sandia researcher Ryan Camacho. "Maybe the first useful one won't be a single giant quantum computer...

All Focus news of the innovation-report >>>



Event News

#IC2S2: When Social Science meets Computer Science - GESIS will host the IC2S2 conference 2017

14.10.2016 | Event News

Agricultural Trade Developments and Potentials in Central Asia and the South Caucasus

14.10.2016 | Event News

World Health Summit – Day Three: A Call to Action

12.10.2016 | Event News

Latest News

The gene of autumn colours

27.10.2016 | Life Sciences

Polymer scaffolds build a better pill to swallow

27.10.2016 | Life Sciences

Greater Range and Longer Lifetime

26.10.2016 | Power and Electrical Engineering

More VideoLinks >>>