Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Astronomers find that galaxies are the ultimate recyclers

22.11.2011
A team of researchers from several universities and institutions, including University of Notre Dame physics faculty Chris Howk and Nicolas Lehner, has demonstrated how galaxies continue to form stars by recycling vast amounts of hydrogen gas and heavy elements across billions of years.

The researchers also identified large masses of previously undetected material surrounding galaxies, and described the large-scale flows of this gas. The results were published in three papers in the Nov. 18 edition of the journal Science.

The leaders of the three studies are Lehner of Notre Dame, Todd Tripp of the University of Massachusetts at Amherst, and Jason Tumlinson of the Space Telescope Science Institute in Baltimore. The researchers used the Cosmic Origins Spectrograph on the Hubble Space Telescope to detect the mass in the halos of the Milky Way and more than 40 other galaxies. The process uses absorption lines in the high-resolution spectra of background quasars or stars to detect the gases in the clouds, which are invisible to other kinds of imaging. Data from the Large Binocular Telescope in Arizona, Keck in Hawaii and the Magellan Telescope in Chile were also key to the studies by measuring the properties of the galaxies.

"We show that not only there is enough mass in the gas flows in halos of galaxies to sustain star formation over billions of years, but also the mass in the hot halos of star-forming galaxies is phenomenal–as large as the mass of gas in the disk of a galaxy," says Lehner.Clouds of ionized hydrogen within 20,000 light years of the Milky Way disk contain enough material to make 100 million suns. About one solar mass of that gas falls into the Milky Way every year, comparable to the rate at which our galaxy makes stars. The cycle could continue for several billion years.

In more distant galaxies, the team found element-rich halos around star-forming galaxies, including surprising levels of heavy elements up to 450,000 light years beyond the visible portion of the galactic disks. The Cosmic Origins Spectrograph measured 10 million solar masses of oxygen in a galaxy's halo, which corresponds to about 1 billion solar masses of gas.

The light of a distant quasar shines through the invisible gaseous halo of a foreground galaxy. Elements in the halo absorb certain frequencies of light. They become detectable, and can be used to measure the halo's mass.

Some of the galaxies that form stars at a very rapid rate, perhaps a hundred solar masses per year, can drive million-degree Fahrenheit gas very far out into intergalactic space at speeds of up to 2 million miles per hour. This is fast enough for the gas to escape forever and never refuel the parent galaxy. "We have observed hot gas in the process of moving out of a galaxy and into intergalactic space," Tripp says.

"Our results confirm a theoretical suspicion that galaxies expel and can recycle their gas, but they also present a fresh challenge to theoretical models to understand these gas flows and integrate them with the overall picture of galaxy formation," Tumlinson says.

Nicolas Lehner | EurekAlert!
Further information:
http://www.nd.edu

More articles from Physics and Astronomy:

nachricht Studying fundamental particles in materials
17.01.2017 | Max-Planck-Institut für Struktur und Dynamik der Materie

nachricht Seeing the quantum future... literally
16.01.2017 | University of Sydney

All articles from Physics and Astronomy >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Interfacial Superconductivity: Magnetic and superconducting order revealed simultaneously

Researchers from the University of Hamburg in Germany, in collaboration with colleagues from the University of Aarhus in Denmark, have synthesized a new superconducting material by growing a few layers of an antiferromagnetic transition-metal chalcogenide on a bismuth-based topological insulator, both being non-superconducting materials.

While superconductivity and magnetism are generally believed to be mutually exclusive, surprisingly, in this new material, superconducting correlations...

Im Focus: Studying fundamental particles in materials

Laser-driving of semimetals allows creating novel quasiparticle states within condensed matter systems and switching between different states on ultrafast time scales

Studying properties of fundamental particles in condensed matter systems is a promising approach to quantum field theory. Quasiparticles offer the opportunity...

Im Focus: Designing Architecture with Solar Building Envelopes

Among the general public, solar thermal energy is currently associated with dark blue, rectangular collectors on building roofs. Technologies are needed for aesthetically high quality architecture which offer the architect more room for manoeuvre when it comes to low- and plus-energy buildings. With the “ArKol” project, researchers at Fraunhofer ISE together with partners are currently developing two façade collectors for solar thermal energy generation, which permit a high degree of design flexibility: a strip collector for opaque façade sections and a solar thermal blind for transparent sections. The current state of the two developments will be presented at the BAU 2017 trade fair.

As part of the “ArKol – development of architecturally highly integrated façade collectors with heat pipes” project, Fraunhofer ISE together with its partners...

Im Focus: How to inflate a hardened concrete shell with a weight of 80 t

At TU Wien, an alternative for resource intensive formwork for the construction of concrete domes was developed. It is now used in a test dome for the Austrian Federal Railways Infrastructure (ÖBB Infrastruktur).

Concrete shells are efficient structures, but not very resource efficient. The formwork for the construction of concrete domes alone requires a high amount of...

Im Focus: Bacterial Pac Man molecule snaps at sugar

Many pathogens use certain sugar compounds from their host to help conceal themselves against the immune system. Scientists at the University of Bonn have now, in cooperation with researchers at the University of York in the United Kingdom, analyzed the dynamics of a bacterial molecule that is involved in this process. They demonstrate that the protein grabs onto the sugar molecule with a Pac Man-like chewing motion and holds it until it can be used. Their results could help design therapeutics that could make the protein poorer at grabbing and holding and hence compromise the pathogen in the host. The study has now been published in “Biophysical Journal”.

The cells of the mouth, nose and intestinal mucosa produce large quantities of a chemical called sialic acid. Many bacteria possess a special transport system...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

12V, 48V, high-voltage – trends in E/E automotive architecture

10.01.2017 | Event News

2nd Conference on Non-Textual Information on 10 and 11 May 2017 in Hannover

09.01.2017 | Event News

Nothing will happen without batteries making it happen!

05.01.2017 | Event News

 
Latest News

Water - as the underlying driver of the Earth’s carbon cycle

17.01.2017 | Earth Sciences

Interfacial Superconductivity: Magnetic and superconducting order revealed simultaneously

17.01.2017 | Materials Sciences

Smart homes will “LISTEN” to your voice

17.01.2017 | Architecture and Construction

VideoLinks
B2B-VideoLinks
More VideoLinks >>>