Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Artificial atoms light up

10.05.2010
A superconducting circuit that strongly interacts with light paves the way for optical computing schemes

Before a quantum effect such as resonance fluorescence—resulting from the interaction of light with atoms—can be applied to quantum computing schemes, scientists need to replicate it in the laboratory.

Thus far, however, efforts using artificial atoms made from superconducting circuits have been unsuccessful. Now, resonance fluorescence of a single artificial atom has been demonstrated by researchers from the NEC Nano Electronics Laboratory in Tsukuba and the RIKEN Advanced Science Institute in Wako.

Resonance fluorescence occurs when a light beam with an energy that matches an atom’s resonance energy gets absorbed by the atom and then re-emitted in random directions. As resonance fluorescence can be used to couple two photons, or light particles, scientists are keen to exploit this effect in quantum computing operations. However, this effect in atoms is too small to be useful for practical applications since photons and atoms interact very weakly due to their small size, according to Jaw-Shen Tsai, who led the research team.

To circumvent this problem, researchers created artificial atoms on computer chips, where the interaction between light and the artificial atom can be optimized. “With a solid-state device such as ours, made from superconducting circuits, the coupling can be very strong,” says Tsai.

Earlier attempts by researchers in the field to observe resonant fluorescence in artificial atoms resulted in low efficiencies of around 12%, owing to poor re-emission of the absorbed light by these atoms. To enhance the re-emission process, the researchers used a one-dimensional waveguide coupled to the artificial atom. This resulted in an efficient re-emission of light from the artificial atom because in the waveguide the light is channelled in only two directions. Tsai and colleagues demonstrated that about 94% of the incoming light at the resonance frequency of the superconducting circuit was absorbed and re-emitted.

By building on this strong interaction between incoming light and the artificial atom a number of potential applications are now possible, according to Tsai. “There are a whole series of experiments one can do, for example towards photon-based quantum computing,” he says. The absorption of a photon by an artificial atom, for example, could be used to control the propagation of a second photon along the waveguide, owing to the non-linear nature of the interaction of light with the artificial atom, Tsai explains.

This research is funded by the Japanese government through a Kakenhi Grant-in-Aid for Scientific Research on Quantum Cybernetics.

The corresponding author for this highlight is based at the Macroscopic Quantum Coherence Team, RIKEN Advanced Science Institute

Journal information

1. Astafiev, O., Zagoskin, A.M., Abdumalikov, A.A., Pashkin, Yu.A., Yamamoto, T., Inomata, K., Nakamura, Y. & Tsai, J.S. Resonance fluorescence of a single artificial atom. Science 327, 840–843 (2010)

gro-pr | Research asia research news
Further information:
http://www.rikenresearch.riken.jp/eng/research/6255
http://www.researchsea.com

More articles from Physics and Astronomy:

nachricht New research identifies how 3-D printed metals can be both strong and ductile
11.12.2017 | University of Birmingham

nachricht Three kinds of information from a single X-ray measurement
11.12.2017 | Friedrich-Schiller-Universität Jena

All articles from Physics and Astronomy >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Scientists channel graphene to understand filtration and ion transport into cells

Tiny pores at a cell's entryway act as miniature bouncers, letting in some electrically charged atoms--ions--but blocking others. Operating as exquisitely sensitive filters, these "ion channels" play a critical role in biological functions such as muscle contraction and the firing of brain cells.

To rapidly transport the right ions through the cell membrane, the tiny channels rely on a complex interplay between the ions and surrounding molecules,...

Im Focus: Towards data storage at the single molecule level

The miniaturization of the current technology of storage media is hindered by fundamental limits of quantum mechanics. A new approach consists in using so-called spin-crossover molecules as the smallest possible storage unit. Similar to normal hard drives, these special molecules can save information via their magnetic state. A research team from Kiel University has now managed to successfully place a new class of spin-crossover molecules onto a surface and to improve the molecule’s storage capacity. The storage density of conventional hard drives could therefore theoretically be increased by more than one hundred fold. The study has been published in the scientific journal Nano Letters.

Over the past few years, the building blocks of storage media have gotten ever smaller. But further miniaturization of the current technology is hindered by...

Im Focus: Successful Mechanical Testing of Nanowires

With innovative experiments, researchers at the Helmholtz-Zentrums Geesthacht and the Technical University Hamburg unravel why tiny metallic structures are extremely strong

Light-weight and simultaneously strong – porous metallic nanomaterials promise interesting applications as, for instance, for future aeroplanes with enhanced...

Im Focus: Virtual Reality for Bacteria

An interdisciplinary group of researchers interfaced individual bacteria with a computer to build a hybrid bio-digital circuit - Study published in Nature Communications

Scientists at the Institute of Science and Technology Austria (IST Austria) have managed to control the behavior of individual bacteria by connecting them to a...

Im Focus: A space-time sensor for light-matter interactions

Physicists in the Laboratory for Attosecond Physics (run jointly by LMU Munich and the Max Planck Institute for Quantum Optics) have developed an attosecond electron microscope that allows them to visualize the dispersion of light in time and space, and observe the motions of electrons in atoms.

The most basic of all physical interactions in nature is that between light and matter. This interaction takes place in attosecond times (i.e. billionths of a...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Innovative strategies to tackle parasitic worms

08.12.2017 | Event News

AKL’18: The opportunities and challenges of digitalization in the laser industry

07.12.2017 | Event News

Blockchain is becoming more important in the energy market

05.12.2017 | Event News

 
Latest News

New research identifies how 3-D printed metals can be both strong and ductile

11.12.2017 | Physics and Astronomy

Scientists channel graphene to understand filtration and ion transport into cells

11.12.2017 | Materials Sciences

What makes corals sick?

11.12.2017 | Earth Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>