Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Artificial atoms light up

10.05.2010
A superconducting circuit that strongly interacts with light paves the way for optical computing schemes

Before a quantum effect such as resonance fluorescence—resulting from the interaction of light with atoms—can be applied to quantum computing schemes, scientists need to replicate it in the laboratory.

Thus far, however, efforts using artificial atoms made from superconducting circuits have been unsuccessful. Now, resonance fluorescence of a single artificial atom has been demonstrated by researchers from the NEC Nano Electronics Laboratory in Tsukuba and the RIKEN Advanced Science Institute in Wako.

Resonance fluorescence occurs when a light beam with an energy that matches an atom’s resonance energy gets absorbed by the atom and then re-emitted in random directions. As resonance fluorescence can be used to couple two photons, or light particles, scientists are keen to exploit this effect in quantum computing operations. However, this effect in atoms is too small to be useful for practical applications since photons and atoms interact very weakly due to their small size, according to Jaw-Shen Tsai, who led the research team.

To circumvent this problem, researchers created artificial atoms on computer chips, where the interaction between light and the artificial atom can be optimized. “With a solid-state device such as ours, made from superconducting circuits, the coupling can be very strong,” says Tsai.

Earlier attempts by researchers in the field to observe resonant fluorescence in artificial atoms resulted in low efficiencies of around 12%, owing to poor re-emission of the absorbed light by these atoms. To enhance the re-emission process, the researchers used a one-dimensional waveguide coupled to the artificial atom. This resulted in an efficient re-emission of light from the artificial atom because in the waveguide the light is channelled in only two directions. Tsai and colleagues demonstrated that about 94% of the incoming light at the resonance frequency of the superconducting circuit was absorbed and re-emitted.

By building on this strong interaction between incoming light and the artificial atom a number of potential applications are now possible, according to Tsai. “There are a whole series of experiments one can do, for example towards photon-based quantum computing,” he says. The absorption of a photon by an artificial atom, for example, could be used to control the propagation of a second photon along the waveguide, owing to the non-linear nature of the interaction of light with the artificial atom, Tsai explains.

This research is funded by the Japanese government through a Kakenhi Grant-in-Aid for Scientific Research on Quantum Cybernetics.

The corresponding author for this highlight is based at the Macroscopic Quantum Coherence Team, RIKEN Advanced Science Institute

Journal information

1. Astafiev, O., Zagoskin, A.M., Abdumalikov, A.A., Pashkin, Yu.A., Yamamoto, T., Inomata, K., Nakamura, Y. & Tsai, J.S. Resonance fluorescence of a single artificial atom. Science 327, 840–843 (2010)

gro-pr | Research asia research news
Further information:
http://www.rikenresearch.riken.jp/eng/research/6255
http://www.researchsea.com

More articles from Physics and Astronomy:

nachricht Basque researchers turn light upside down
23.02.2018 | Elhuyar Fundazioa

nachricht Attoseconds break into atomic interior
23.02.2018 | Max-Planck-Institut für Quantenoptik

All articles from Physics and Astronomy >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Attoseconds break into atomic interior

A newly developed laser technology has enabled physicists in the Laboratory for Attosecond Physics (jointly run by LMU Munich and the Max Planck Institute of Quantum Optics) to generate attosecond bursts of high-energy photons of unprecedented intensity. This has made it possible to observe the interaction of multiple photons in a single such pulse with electrons in the inner orbital shell of an atom.

In order to observe the ultrafast electron motion in the inner shells of atoms with short light pulses, the pulses must not only be ultrashort, but very...

Im Focus: Good vibrations feel the force

A group of researchers led by Andrea Cavalleri at the Max Planck Institute for Structure and Dynamics of Matter (MPSD) in Hamburg has demonstrated a new method enabling precise measurements of the interatomic forces that hold crystalline solids together. The paper Probing the Interatomic Potential of Solids by Strong-Field Nonlinear Phononics, published online in Nature, explains how a terahertz-frequency laser pulse can drive very large deformations of the crystal.

By measuring the highly unusual atomic trajectories under extreme electromagnetic transients, the MPSD group could reconstruct how rigid the atomic bonds are...

Im Focus: Developing reliable quantum computers

International research team makes important step on the path to solving certification problems

Quantum computers may one day solve algorithmic problems which even the biggest supercomputers today can’t manage. But how do you test a quantum computer to...

Im Focus: In best circles: First integrated circuit from self-assembled polymer

For the first time, a team of researchers at the Max-Planck Institute (MPI) for Polymer Research in Mainz, Germany, has succeeded in making an integrated circuit (IC) from just a monolayer of a semiconducting polymer via a bottom-up, self-assembly approach.

In the self-assembly process, the semiconducting polymer arranges itself into an ordered monolayer in a transistor. The transistors are binary switches used...

Im Focus: Demonstration of a single molecule piezoelectric effect

Breakthrough provides a new concept of the design of molecular motors, sensors and electricity generators at nanoscale

Researchers from the Institute of Organic Chemistry and Biochemistry of the CAS (IOCB Prague), Institute of Physics of the CAS (IP CAS) and Palacký University...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

2nd International Conference on High Temperature Shape Memory Alloys (HTSMAs)

15.02.2018 | Event News

Aachen DC Grid Summit 2018

13.02.2018 | Event News

How Global Climate Policy Can Learn from the Energy Transition

12.02.2018 | Event News

 
Latest News

Basque researchers turn light upside down

23.02.2018 | Physics and Astronomy

Finnish research group discovers a new immune system regulator

23.02.2018 | Health and Medicine

Attoseconds break into atomic interior

23.02.2018 | Physics and Astronomy

VideoLinks
Science & Research
Overview of more VideoLinks >>>