Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Artificial atoms light up

10.05.2010
A superconducting circuit that strongly interacts with light paves the way for optical computing schemes

Before a quantum effect such as resonance fluorescence—resulting from the interaction of light with atoms—can be applied to quantum computing schemes, scientists need to replicate it in the laboratory.

Thus far, however, efforts using artificial atoms made from superconducting circuits have been unsuccessful. Now, resonance fluorescence of a single artificial atom has been demonstrated by researchers from the NEC Nano Electronics Laboratory in Tsukuba and the RIKEN Advanced Science Institute in Wako.

Resonance fluorescence occurs when a light beam with an energy that matches an atom’s resonance energy gets absorbed by the atom and then re-emitted in random directions. As resonance fluorescence can be used to couple two photons, or light particles, scientists are keen to exploit this effect in quantum computing operations. However, this effect in atoms is too small to be useful for practical applications since photons and atoms interact very weakly due to their small size, according to Jaw-Shen Tsai, who led the research team.

To circumvent this problem, researchers created artificial atoms on computer chips, where the interaction between light and the artificial atom can be optimized. “With a solid-state device such as ours, made from superconducting circuits, the coupling can be very strong,” says Tsai.

Earlier attempts by researchers in the field to observe resonant fluorescence in artificial atoms resulted in low efficiencies of around 12%, owing to poor re-emission of the absorbed light by these atoms. To enhance the re-emission process, the researchers used a one-dimensional waveguide coupled to the artificial atom. This resulted in an efficient re-emission of light from the artificial atom because in the waveguide the light is channelled in only two directions. Tsai and colleagues demonstrated that about 94% of the incoming light at the resonance frequency of the superconducting circuit was absorbed and re-emitted.

By building on this strong interaction between incoming light and the artificial atom a number of potential applications are now possible, according to Tsai. “There are a whole series of experiments one can do, for example towards photon-based quantum computing,” he says. The absorption of a photon by an artificial atom, for example, could be used to control the propagation of a second photon along the waveguide, owing to the non-linear nature of the interaction of light with the artificial atom, Tsai explains.

This research is funded by the Japanese government through a Kakenhi Grant-in-Aid for Scientific Research on Quantum Cybernetics.

The corresponding author for this highlight is based at the Macroscopic Quantum Coherence Team, RIKEN Advanced Science Institute

Journal information

1. Astafiev, O., Zagoskin, A.M., Abdumalikov, A.A., Pashkin, Yu.A., Yamamoto, T., Inomata, K., Nakamura, Y. & Tsai, J.S. Resonance fluorescence of a single artificial atom. Science 327, 840–843 (2010)

gro-pr | Research asia research news
Further information:
http://www.rikenresearch.riken.jp/eng/research/6255
http://www.researchsea.com

More articles from Physics and Astronomy:

nachricht New thruster design increases efficiency for future spaceflight
16.08.2017 | American Institute of Physics

nachricht Tracking a solar eruption through the solar system
16.08.2017 | American Geophysical Union

All articles from Physics and Astronomy >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Exotic quantum states made from light: Physicists create optical “wells” for a super-photon

Physicists at the University of Bonn have managed to create optical hollows and more complex patterns into which the light of a Bose-Einstein condensate flows. The creation of such highly low-loss structures for light is a prerequisite for complex light circuits, such as for quantum information processing for a new generation of computers. The researchers are now presenting their results in the journal Nature Photonics.

Light particles (photons) occur as tiny, indivisible portions. Many thousands of these light portions can be merged to form a single super-photon if they are...

Im Focus: Circular RNA linked to brain function

For the first time, scientists have shown that circular RNA is linked to brain function. When a RNA molecule called Cdr1as was deleted from the genome of mice, the animals had problems filtering out unnecessary information – like patients suffering from neuropsychiatric disorders.

While hundreds of circular RNAs (circRNAs) are abundant in mammalian brains, one big question has remained unanswered: What are they actually good for? In the...

Im Focus: RAVAN CubeSat measures Earth's outgoing energy

An experimental small satellite has successfully collected and delivered data on a key measurement for predicting changes in Earth's climate.

The Radiometer Assessment using Vertically Aligned Nanotubes (RAVAN) CubeSat was launched into low-Earth orbit on Nov. 11, 2016, in order to test new...

Im Focus: Scientists shine new light on the “other high temperature superconductor”

A study led by scientists of the Max Planck Institute for the Structure and Dynamics of Matter (MPSD) at the Center for Free-Electron Laser Science in Hamburg presents evidence of the coexistence of superconductivity and “charge-density-waves” in compounds of the poorly-studied family of bismuthates. This observation opens up new perspectives for a deeper understanding of the phenomenon of high-temperature superconductivity, a topic which is at the core of condensed matter research since more than 30 years. The paper by Nicoletti et al has been published in the PNAS.

Since the beginning of the 20th century, superconductivity had been observed in some metals at temperatures only a few degrees above the absolute zero (minus...

Im Focus: Scientists improve forecast of increasing hazard on Ecuadorian volcano

Researchers from the University of Miami (UM) Rosenstiel School of Marine and Atmospheric Science, the Italian Space Agency (ASI), and the Instituto Geofisico--Escuela Politecnica Nacional (IGEPN) of Ecuador, showed an increasing volcanic danger on Cotopaxi in Ecuador using a powerful technique known as Interferometric Synthetic Aperture Radar (InSAR).

The Andes region in which Cotopaxi volcano is located is known to contain some of the world's most serious volcanic hazard. A mid- to large-size eruption has...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Call for Papers – ICNFT 2018, 5th International Conference on New Forming Technology

16.08.2017 | Event News

Sustainability is the business model of tomorrow

04.08.2017 | Event News

Clash of Realities 2017: Registration now open. International Conference at TH Köln

26.07.2017 | Event News

 
Latest News

New thruster design increases efficiency for future spaceflight

16.08.2017 | Physics and Astronomy

Transporting spin: A graphene and boron nitride heterostructure creates large spin signals

16.08.2017 | Materials Sciences

A new method for the 3-D printing of living tissues

16.08.2017 | Interdisciplinary Research

VideoLinks
B2B-VideoLinks
More VideoLinks >>>