Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:


New application of physics tools used in biology

A Lawrence Livermore National Laboratory physicist and his colleagues have found a new application for the tools and mathematics typically used in physics to help solve problems in biology.

Specifically, the team used statistical mechanics and mathematical modeling to shed light on something known as epigenetic memory -- how an organism can create a biological memory of some variable condition, such as quality of nutrition or temperature.

This DNA molecule is wrapped twice around a histone octamer, the major structural protein of chromosomes. New studies show they play a role in preserving biological memory when cells divide. Image courtesy of Memorial University of Newfoundland.

"The work highlights the interdisciplinary nature of modern molecular biology, in particular, how the tools and models from mathematics and physics can help clarify problems in biology," said Ken Kim, a LLNL physicist and one of the authors of a paper appearing in the Feb. 7 issue of Physical Review Letters.

Not all characteristics of living organisms can be explained by their genes alone. Epigenetic processes react with great sensitivity to genes' immediate biochemical surroundings -- and further, they pass those reactions on to the next generation.

The team's work on the dynamics of histone protein modification is central to epigenetics. Like genetic changes, epigenetic changes are preserved when a cell divides. Histone proteins were once thought to be static, structural components in chromosomes, but recent studies have shown that histones play an important dynamical role in the machinery responsible for epigenetic regulation.

When histones undergo chemical alterations (histone modification) as a result of some external stimulus, they trigger short-term biological memory of that stimulus within a cell, which can be passed down to its daughter cells. This memory also can be reversed after a few cell division cycles.

Epigenetic modifications are essential in the development and function of cells, but also play a key role in cancer, according to Jianhua Xing, a former LLNL postdoc and current professor at Virginia Tech. "For example, changes in the epigenome can lead to the activation or deactivation of signaling pathways that can lead to tumor formation," Xing added.

The molecular mechanism underlying epigenetic memory involves complex interactions between histones, DNA and enzymes, which produce modification patterns that are recognized by the cell. To gain insight into such complex systems, the team constructed a mathematical model that captures the essential features of the histone-induced epigenetic memory. The model highlights the "engineering" challenge a cell must constantly face during molecular recognition. It is analogous to restoring a picture with missing parts. The molecular properties of a species have been evolutionarily selected to allow them to "reason" what the missing parts are based on incomplete information pattern inherited from the mother cell.

The research team includes Tech graduate students Hang Zhang and Abhishek Mukhopadhyay and postdoc researcher Xiao-Jun Tian also of Virginia Tech, and Yujin Kim of Foothill High School in Pleasanton, Calif. During this research project, Xing served as a mentor to Yujin Kim.

The research is supported by National Science Foundation grants.

Anne Stark | EurekAlert!
Further information:

More articles from Physics and Astronomy:

nachricht Researchers at Fraunhofer monitor re-entry of Chinese space station Tiangong-1
21.03.2018 | Fraunhofer-Institut für Hochfrequenzphysik und Radartechnik FHR

nachricht Taming chaos: Calculating probability in complex systems
21.03.2018 | American Institute of Physics

All articles from Physics and Astronomy >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Researchers Discover New Anti-Cancer Protein

An international team of researchers has discovered a new anti-cancer protein. The protein, called LHPP, prevents the uncontrolled proliferation of cancer cells in the liver. The researchers led by Prof. Michael N. Hall from the Biozentrum, University of Basel, report in “Nature” that LHPP can also serve as a biomarker for the diagnosis and prognosis of liver cancer.

The incidence of liver cancer, also known as hepatocellular carcinoma, is steadily increasing. In the last twenty years, the number of cases has almost doubled...

Im Focus: Researchers at Fraunhofer monitor re-entry of Chinese space station Tiangong-1

In just a few weeks from now, the Chinese space station Tiangong-1 will re-enter the Earth's atmosphere where it will to a large extent burn up. It is possible that some debris will reach the Earth's surface. Tiangong-1 is orbiting the Earth uncontrolled at a speed of approx. 29,000 km/h.Currently the prognosis relating to the time of impact currently lies within a window of several days. The scientists at Fraunhofer FHR have already been monitoring Tiangong-1 for a number of weeks with their TIRA system, one of the most powerful space observation radars in the world, with a view to supporting the German Space Situational Awareness Center and the ESA with their re-entry forecasts.

Following the loss of radio contact with Tiangong-1 in 2016 and due to the low orbital height, it is now inevitable that the Chinese space station will...

Im Focus: Alliance „OLED Licht Forum“ – Key partner for OLED lighting solutions

Fraunhofer Institute for Organic Electronics, Electron Beam and Plasma Technology FEP, provider of research and development services for OLED lighting solutions, announces the founding of the “OLED Licht Forum” and presents latest OLED design and lighting solutions during light+building, from March 18th – 23rd, 2018 in Frankfurt a.M./Germany, at booth no. F91 in Hall 4.0.

They are united in their passion for OLED (organic light emitting diodes) lighting with all of its unique facets and application possibilities. Thus experts in...

Im Focus: Mars' oceans formed early, possibly aided by massive volcanic eruptions

Oceans formed before Tharsis and evolved together, shaping climate history of Mars

A new scenario seeking to explain how Mars' putative oceans came and went over the last 4 billion years implies that the oceans formed several hundred million...

Im Focus: Tiny implants for cells are functional in vivo

For the first time, an interdisciplinary team from the University of Basel has succeeded in integrating artificial organelles into the cells of live zebrafish embryos. This innovative approach using artificial organelles as cellular implants offers new potential in treating a range of diseases, as the authors report in an article published in Nature Communications.

In the cells of higher organisms, organelles such as the nucleus or mitochondria perform a range of complex functions necessary for life. In the networks of...

All Focus news of the innovation-report >>>



Industry & Economy
Event News

Virtual reality conference comes to Reutlingen

19.03.2018 | Event News

Ultrafast Wireless and Chip Design at the DATE Conference in Dresden

16.03.2018 | Event News

International Tinnitus Conference of the Tinnitus Research Initiative in Regensburg

13.03.2018 | Event News

Latest News

Modular safety concept increases flexibility in plant conversion

22.03.2018 | Trade Fair News

New interactive map shows climate change everywhere in world

22.03.2018 | Earth Sciences

New technologies and computing power to help strengthen population data

22.03.2018 | Earth Sciences

Science & Research
Overview of more VideoLinks >>>