Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:


Active pits on Rosetta’s comet


Some of the dust jets emitted from Rosetta’s comet can be traced back to active pits on its surface. They could be the remnants of collapsed cavities.

Cavities measuring up to a few hundred meters in diameter can be found under the surface of Rosetta’s comet 67P/Churyumov-Gerasimenko. They can be instable and collapse in a kind of sinkhole process. This is the result of a new study led by researchers from the Max Planck Institute for Solar System Research (MPS) in Germany, which analyses images of the comet’s surface.

Some of the observed pits are active. OSIRIS, the scientific imaging system on board Rosetta, took this image in October 2014 from a distance of seven kilometers.


The pits allow for a look up to two hundert meters into the comet. The inner walls show layered structures. These pits can be found on the "back" of the comet in the Seth region. This images was taken in September 2014 from a distance of 28 kilometers.© ESA/Rosetta/MPS for OSIRIS Team MPS/UPD/LAM/IAA/SSO/INTA/UPM/DASP/IDA

The images show peculiar, pit-like recesses that are unlike ordinary craters and that emit dust and gas into space. In their study the researchers argue that these pits arise when cavities beneath the surface cave in. The results will be published this Thursday in the journal Nature.

Researchers under the lead of Jean-Baptiste Vincent from the MPS have studied 18 peculiar pit-like depressions all occuring in the northern hemisphere of Rosetta’s comet 67P/Churyumov-Gerasimenko. The scientists analysed images of the comet obtained by OSIRIS, the scientific imaging system on board ESA’s Rosetta spacecraft, in the period from July to December 2014. The pits' diameters vary between ten and a few hundreds of meters. They exhibit nearly vertical sidewalls and are exceptionally deep with the largest ones extending up to two hundred meters into the comet’s interior. The walls of these depressions are characterized by layers and terraces, their bottoms are mostly flat.

Earlier, similar structures had been discovered on the comets 9P/Tempel 1 and 81P/Wild 2, that have been visited by NASA’s space probes Deep Impact and Stardust in the past. “Because of their unusual morphology, these pits can be clearly distinguished from impact craters”, says OSIRIS-scientist Jean-Baptiste Vincent. “They seem to be a typical characteristic of comets”, he adds.

Some of the pits are also active: fine jets of dust are emitted from the inside walls. The scientists reached this conclusion by studying images showing the same jet from different perspectives. “In this way we obtain information on the jet’s three dimensional structure and can determine their origin on the surface”, says Vincent.

However, the emission of dust alone cannot have created these structures. Frozen gases evaporating from the comet’s surface under the influence of the Sun cannot carry enough dust with them to create holes of this size. In some cases, thousands of years of evaporation would be necessary. However, Rosetta’s comet has been advancing into the inner solar system and therewith into the Sun’s vicinity only since 1959. And even a sudden outburst of activity like the one Rosetta witnessed during the approach phase in April 2014 is unable to move enough material.

Instead, it is most likely that the pits are collapsed cavities. “Apparently, these underground voids grow larger with time until the top layer becomes instable and caves in," says Holger Sierks from the MPS, co-author of the new paper and OSIRIS Principal Investigator. As a result, fresh material is exposed at the edges of the depression. From there gases can vaporise thus charging the observed jets.

But how did the cavities come to be? The researchers currently see several possibilities. For example, the voids could date from the comet’s birth. When smaller chunks, called planetesimals, collide at low speeds such gaps may remain.

It is also conceivable, that frozen carbon dioxide and monoxide evaporating from deep within the cometary nucleus produce such subsurface structures. Frozen water evaporates at much higher temperatures. It is difficult to achieve these temperatures beneath the comet's highly insulating, superficial layer of dust by solar radiation alone. Instead, the researchers have a different heat source in view. When amorphous ice beneath the comet's surface consisting of irregularly packed molecules transforms into crystallized ice, heat is released. This might suffice to evaporate water in sufficient quantities.

"At this point, we do not favour any of these three options. Maybe even all effects work together”, says Sierks. "But we hope that the mission will brings clarity in its further course."

Already, the active pits prove useful for estimating the age of cometary surfaces. "Since the pits are active, they change with time," says Vincent. By and by the pits expand: the edges retreat forming extensive terraces. A cometary surface exhibiting deep holes is therefore rather young. Older areas present themselves as smooth plateaus.

Rosetta is an ESA mission with contributions from its member states and NASA. Rosetta's Philae lander is provided by a consortium led by DLR, MPS, CNES and ASI. Rosetta is the first mission in history to rendezvous with a comet, escort it as it orbits the Sun, and deploy a lander to its surface.


Dr. Birgit Krummheuer
Press Officer

Max Planck Institute for Solar System Research, Göttingen
Phone: +49 551 384979-462

Fax: +49 551 384979-240


Jean-Baptiste Vincent
Max Planck Institute for Solar System Research, Göttingen
Phone: +49 5556 979-291


Dr. Holger Sierks
OSIRIS Principal Investigator

Max Planck Institute for Solar System Research, Göttingen
Phone: +49 551 384979-242


Original publication
Jean-Baptiste Vincent et al.

Large heterogeneities in comet 67P as revealed by active pits from sinkhole collapse

Nature, 2 July 2015

Dr. Birgit Krummheuer | Max Planck Institute for Solar System Research, Göttingen
Further information:

More articles from Physics and Astronomy:

nachricht Move over, lasers: Scientists can now create holograms from neutrons, too
21.10.2016 | National Institute of Standards and Technology (NIST)

nachricht Finding the lightest superdeformed triaxial atomic nucleus
20.10.2016 | The Henryk Niewodniczanski Institute of Nuclear Physics Polish Academy of Sciences

All articles from Physics and Astronomy >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: New 3-D wiring technique brings scalable quantum computers closer to reality

Researchers from the Institute for Quantum Computing (IQC) at the University of Waterloo led the development of a new extensible wiring technique capable of controlling superconducting quantum bits, representing a significant step towards to the realization of a scalable quantum computer.

"The quantum socket is a wiring method that uses three-dimensional wires based on spring-loaded pins to address individual qubits," said Jeremy Béjanin, a PhD...

Im Focus: Scientists develop a semiconductor nanocomposite material that moves in response to light

In a paper in Scientific Reports, a research team at Worcester Polytechnic Institute describes a novel light-activated phenomenon that could become the basis for applications as diverse as microscopic robotic grippers and more efficient solar cells.

A research team at Worcester Polytechnic Institute (WPI) has developed a revolutionary, light-activated semiconductor nanocomposite material that can be used...

Im Focus: Diamonds aren't forever: Sandia, Harvard team create first quantum computer bridge

By forcefully embedding two silicon atoms in a diamond matrix, Sandia researchers have demonstrated for the first time on a single chip all the components needed to create a quantum bridge to link quantum computers together.

"People have already built small quantum computers," says Sandia researcher Ryan Camacho. "Maybe the first useful one won't be a single giant quantum computer...

Im Focus: New Products - Highlights of COMPAMED 2016

COMPAMED has become the leading international marketplace for suppliers of medical manufacturing. The trade fair, which takes place every November and is co-located to MEDICA in Dusseldorf, has been steadily growing over the past years and shows that medical technology remains a rapidly growing market.

In 2016, the joint pavilion by the IVAM Microtechnology Network, the Product Market “High-tech for Medical Devices”, will be located in Hall 8a again and will...

Im Focus: Ultra-thin ferroelectric material for next-generation electronics

'Ferroelectric' materials can switch between different states of electrical polarization in response to an external electric field. This flexibility means they show promise for many applications, for example in electronic devices and computer memory. Current ferroelectric materials are highly valued for their thermal and chemical stability and rapid electro-mechanical responses, but creating a material that is scalable down to the tiny sizes needed for technologies like silicon-based semiconductors (Si-based CMOS) has proven challenging.

Now, Hiroshi Funakubo and co-workers at the Tokyo Institute of Technology, in collaboration with researchers across Japan, have conducted experiments to...

All Focus news of the innovation-report >>>



Event News

#IC2S2: When Social Science meets Computer Science - GESIS will host the IC2S2 conference 2017

14.10.2016 | Event News

Agricultural Trade Developments and Potentials in Central Asia and the South Caucasus

14.10.2016 | Event News

World Health Summit – Day Three: A Call to Action

12.10.2016 | Event News

Latest News

Resolving the mystery of preeclampsia

21.10.2016 | Health and Medicine

Stanford researchers create new special-purpose computer that may someday save us billions

21.10.2016 | Information Technology

From ancient fossils to future cars

21.10.2016 | Materials Sciences

More VideoLinks >>>