Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

More accurate than Heisenberg allows?

28.07.2010
Uncertainty in the presence of a quantum memory

A quantum particle is hard to grasp, because one cannot determine all its properties precisely at the same time. Measurements of certain parameter pairs such as position and momentum remain inaccurate to a degree given by Heisenberg's Uncertainty Principle.

This is important for the security of quantum cryptography, where information is transmitted in the form of quantum states such as the polarization of particles of light. A group of scientists from LMU and the ETH in Zurich, including Professor Matthias Christandl, has now shown that position and momentum can be predicted more precisely than Heisenberg's Uncertainty Principle would lead one to expect, if the recipient makes use of a quantum memory that employs ions or atoms.

The results show that the magnitude of the uncertainty depends on the degree of correlation ("entanglement") between the quantum memory and the quantum particle. "The result not only enhances our understanding of quantum memories, it also provides us with a method for determining the degree of correlation between two quantum particles", says Christandl. "Moreover, the effect we have observed could yield a means of testing the security of quantum cryptographic systems." (Nature Physics online, July 25, 2010)

Unlike classical computers, quantum computers operate not with bits, but with quantum bits or qubits, quantum mechanical states of particles. The crucial feature of qubits is that they can exist in different states at once, not just 0 or 1, but also as a superposition of 0 and 1. The ability to exploit superposition states is what makes quantum computers potentially so powerful. "The goal of our research is to work out how quantum memories, i.e. memory systems for qubits, might be utilized in the future and how they affect the transmission of quantum bits", explains Christandl, who left LMU Munich in June 2010 to take up a position in the Institute of Theoretical Physics at the ETH in Zurich.

Heisenberg's Uncertainty Principle plays a central role in quantum computing, because it sets a fundamental limit to the accuracy with which a quantum state can be determined. Quantum mechanics also tells us that the measurement of a parameter can itself perturb the state of a particle. If, for example, one were to measure the position of a particle with infinite precision, the particle's momentum would become completely uncertain. Quantum cryptography uses this effect to encrypt data, for instance by entangling two quantum particles in a way that the probability with which the measurement of one particle yields a certain value depends on the state of the other particle. Eavesdropping can thus easily be uncovered, because any measurement will change the state of the particle measured.

The teams at LMU and the ETH Zurich have now shown that the result of a measurement on a quantum particle can be predicted with greater accuracy if information about the particle is available in a quantum memory. Atoms or ions can form the basis for such a quantum memory. The researchers have, for the first time, derived a formula for Heisenberg's Principle, which takes account of the effect of a quantum memory. In the case of so-called entangled particles, whose states are very highly correlated (i.e. to a degree that is greater than that allowed by the laws of classical physics), the uncertainty can disappear. According to Christandl, this can be roughly understood as follows "One might say that the disorder or uncertainty in the state of a particle depends on the information stored in the quantum memory. Imagine having a pile of papers on a table. Often these will appear to be completely disordered -- except to the person who put them there in the first place."

"Our results not only improve our understanding of quantum memories, they also give us a way of measuring entanglement", says Christandl. "The effect could also help us to test the security of quantum cryptographic systems." One can picture the method as a game in which player B transmits a particle to player A. A then performs a measurement on the particle, introducing an uncertainty. A subsequent measurement by B will only yield the value determined by A with an uncertainty given by Heisenberg's Principle. "But if B uses a quantum memory", says Christandl, "he can determine the correct value and win the game."

Publication:
"The Uncertainty Principle in the Presence of Quantum Memory",
M. Berta, M. Christandl, R. Colbeck, J.M. Renes, R. Renner
Nature Physics, 25 July 2010
DOI: 10.1038/nphys1734
Contact:
Prof. Dr. Matthias Christandl
Theoretical Physics
ETH Zürich
Phone +41 44 633 25 92
E-mail: christandl@phys.ethz.ch

Prof. Dr. Matthias Christandl | EurekAlert!
Further information:
http://www.ethz.ch

More articles from Physics and Astronomy:

nachricht New manifestation of magnetic monopoles discovered
08.12.2017 | Institute of Science and Technology Austria

nachricht NASA's SuperTIGER balloon flies again to study heavy cosmic particles
07.12.2017 | NASA/Goddard Space Flight Center

All articles from Physics and Astronomy >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Towards data storage at the single molecule level

The miniaturization of the current technology of storage media is hindered by fundamental limits of quantum mechanics. A new approach consists in using so-called spin-crossover molecules as the smallest possible storage unit. Similar to normal hard drives, these special molecules can save information via their magnetic state. A research team from Kiel University has now managed to successfully place a new class of spin-crossover molecules onto a surface and to improve the molecule’s storage capacity. The storage density of conventional hard drives could therefore theoretically be increased by more than one hundred fold. The study has been published in the scientific journal Nano Letters.

Over the past few years, the building blocks of storage media have gotten ever smaller. But further miniaturization of the current technology is hindered by...

Im Focus: Successful Mechanical Testing of Nanowires

With innovative experiments, researchers at the Helmholtz-Zentrums Geesthacht and the Technical University Hamburg unravel why tiny metallic structures are extremely strong

Light-weight and simultaneously strong – porous metallic nanomaterials promise interesting applications as, for instance, for future aeroplanes with enhanced...

Im Focus: Virtual Reality for Bacteria

An interdisciplinary group of researchers interfaced individual bacteria with a computer to build a hybrid bio-digital circuit - Study published in Nature Communications

Scientists at the Institute of Science and Technology Austria (IST Austria) have managed to control the behavior of individual bacteria by connecting them to a...

Im Focus: A space-time sensor for light-matter interactions

Physicists in the Laboratory for Attosecond Physics (run jointly by LMU Munich and the Max Planck Institute for Quantum Optics) have developed an attosecond electron microscope that allows them to visualize the dispersion of light in time and space, and observe the motions of electrons in atoms.

The most basic of all physical interactions in nature is that between light and matter. This interaction takes place in attosecond times (i.e. billionths of a...

Im Focus: A transistor of graphene nanoribbons

Transistors based on carbon nanostructures: what sounds like a futuristic dream could be reality in just a few years' time. An international research team working with Empa has now succeeded in producing nanotransistors from graphene ribbons that are only a few atoms wide, as reported in the current issue of the trade journal "Nature Communications."

Graphene ribbons that are only a few atoms wide, so-called graphene nanoribbons, have special electrical properties that make them promising candidates for the...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Innovative strategies to tackle parasitic worms

08.12.2017 | Event News

AKL’18: The opportunities and challenges of digitalization in the laser industry

07.12.2017 | Event News

Blockchain is becoming more important in the energy market

05.12.2017 | Event News

 
Latest News

Making fuel out of thick air

08.12.2017 | Life Sciences

Rules for superconductivity mirrored in 'excitonic insulator'

08.12.2017 | Information Technology

Smartphone case offers blood glucose monitoring on the go

08.12.2017 | Information Technology

VideoLinks
B2B-VideoLinks
More VideoLinks >>>