Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

A Starburst Captured: Students Photograph Exploding Star in Pinwheel Galaxy

11.10.2011
In the Pinwheel Galaxy some 21 light years from Earth, a supernova beams brightly, out-shining its cosmic neighbors and causing a stir among starwatchers.

Students in University of Delaware Prof. Judi Provencal’s Observational Astronomy class (PHYS 469) photographed the exploding star last week using the telescope at Mt. Cuba Astronomical Observatory in Greenville, Del., which has a lens spanning 24 inches in diameter.

“The supernova, a star that is blowing itself to bits, is the brightest object in the lower center of the image,” Provencal notes. “It is the brightest supernova in the last 20 years and might be visible with binoculars.”

The bursting star, known as PTF 11kly, will eventually fade over the next year or so and then turn into a neutron star or a black hole. The material ejected when it exploded may form new stars.

According to Provencal, PTF 11kly is a “Type 1a” supernova, which means it’s half of a “stellar team” known as a binary star. One of the stars is an “ordinary” star, and the other is a white dwarf, a super-dense star that is the size of the Earth, but has the mass of the sun. Because it doesn’t have nuclear reactions firing away in its core, the white dwarf does not generate any internal energy. Instead, it’s supported against gravity by “electron degeneracy pressure” which occurs when a huge number of electrons are compacted tightly together in a small volume.

The two stars of the binary team orbit very closely together, so close that the “ordinary” star transfers material to the white dwarf. When the white dwarf gains enough material that it reaches a critical mass (about 1.4 times the mass of the sun), electron degeneracy pressure fails and the star will collapse in on itself. This produces a lot of energy, which we see as the supernova, Provencal explains.

“These are the types of supernova that were used to determine that the universe is actually accelerating in its expansion, which has led to the whole field of dark energy,” Provencal says.

In the Pinwheel Galaxy some 21 light years from Earth, a supernova beams brightly, out-shining its cosmic neighbors and causing a stir among starwatchers.

Students in University of Delaware Prof. Judi Provencal’s Observational Astronomy class (PHYS 469) photographed the exploding star last week using the telescope at Mt. Cuba Astronomical Observatory in Greenville, Del., which has a lens spanning 24 inches in diameter.The Pinwheel Galaxy inhabited by the PTF 11kly supernova was discovered in 1781 by French astronomer Pierre Mechain, who thought it was a nebula, a gas cloud from which new stars are born. Erwin Hubble later would show that it is indeed a full-fledged galaxy.

Mechain’s fellow astronomer Charles Messier would include it as an item, today still referred to as “Messier 101,” or M101, in his 1781 astronomical catalog.

“Messier’s list was supposed to help with comet hunting since it was a list of fuzzy objects that didn’t move in the sky. Comet hunting was a big deal back then,” notes Provencal.

The Pinwheel Galaxy is a spiral galaxy much like our own Milky Way. It’s called a spiral galaxy for the spiral arms or “spokes” that curve away from a center disk of highly concentrated stars. The stars in these spokes are younger and thus hotter and brighter than the stars at the center.

Although the Pinwheel Galaxy is playing host to the brightest, nearest supernova seen from Earth in years, starwatchers should know that our own Milky Way also sports supernovae from time to time—the most recent one was recorded in 1572, Provencal says.

Tracey Bryant | Newswise Science News
Further information:
http://www.udel.edu

More articles from Physics and Astronomy:

nachricht Significantly more productivity in USP lasers
06.12.2016 | Fraunhofer-Institut für Lasertechnik ILT

nachricht Shape matters when light meets atom
05.12.2016 | Centre for Quantum Technologies at the National University of Singapore

All articles from Physics and Astronomy >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Significantly more productivity in USP lasers

In recent years, lasers with ultrashort pulses (USP) down to the femtosecond range have become established on an industrial scale. They could advance some applications with the much-lauded “cold ablation” – if that meant they would then achieve more throughput. A new generation of process engineering that will address this issue in particular will be discussed at the “4th UKP Workshop – Ultrafast Laser Technology” in April 2017.

Even back in the 1990s, scientists were comparing materials processing with nanosecond, picosecond and femtosesecond pulses. The result was surprising:...

Im Focus: Shape matters when light meets atom

Mapping the interaction of a single atom with a single photon may inform design of quantum devices

Have you ever wondered how you see the world? Vision is about photons of light, which are packets of energy, interacting with the atoms or molecules in what...

Im Focus: Novel silicon etching technique crafts 3-D gradient refractive index micro-optics

A multi-institutional research collaboration has created a novel approach for fabricating three-dimensional micro-optics through the shape-defined formation of porous silicon (PSi), with broad impacts in integrated optoelectronics, imaging, and photovoltaics.

Working with colleagues at Stanford and The Dow Chemical Company, researchers at the University of Illinois at Urbana-Champaign fabricated 3-D birefringent...

Im Focus: Quantum Particles Form Droplets

In experiments with magnetic atoms conducted at extremely low temperatures, scientists have demonstrated a unique phase of matter: The atoms form a new type of quantum liquid or quantum droplet state. These so called quantum droplets may preserve their form in absence of external confinement because of quantum effects. The joint team of experimental physicists from Innsbruck and theoretical physicists from Hannover report on their findings in the journal Physical Review X.

“Our Quantum droplets are in the gas phase but they still drop like a rock,” explains experimental physicist Francesca Ferlaino when talking about the...

Im Focus: MADMAX: Max Planck Institute for Physics takes up axion research

The Max Planck Institute for Physics (MPP) is opening up a new research field. A workshop from November 21 - 22, 2016 will mark the start of activities for an innovative axion experiment. Axions are still only purely hypothetical particles. Their detection could solve two fundamental problems in particle physics: What dark matter consists of and why it has not yet been possible to directly observe a CP violation for the strong interaction.

The “MADMAX” project is the MPP’s commitment to axion research. Axions are so far only a theoretical prediction and are difficult to detect: on the one hand,...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

ICTM Conference 2017: Production technology for turbomachine manufacturing of the future

16.11.2016 | Event News

Innovation Day Laser Technology – Laser Additive Manufacturing

01.11.2016 | Event News

#IC2S2: When Social Science meets Computer Science - GESIS will host the IC2S2 conference 2017

14.10.2016 | Event News

 
Latest News

NTU scientists build new ultrasound device using 3-D printing technology

07.12.2016 | Health and Medicine

The balancing act: An enzyme that links endocytosis to membrane recycling

07.12.2016 | Life Sciences

How to turn white fat brown

07.12.2016 | Health and Medicine

VideoLinks
B2B-VideoLinks
More VideoLinks >>>