Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

A Sisyphean Task for Polar Molecules

15.11.2012
A new cooling method for polyatomic molecules paves the way for the investigation of molecular gases near absolute zero temperature.

The investigation of ultracold molecules is of great interest for a number of problems. It could lead to a better understanding of chemical reactions in astrophysics. Ensembles of ultracold molecules could be used as quantum simulators, single molecules as quantum bits for storage of quantum information.


Figure 1: Scheme of the experimental apparatus.
Graphik: Rosa Glöckner, MPQ


Figure 2: An artist's depiction of optoelectrical Sisyphus cooling.
Graphic: Alexander Prehn, MPQ

Whereas efficient cooling methods have already been demonstrated for the cooling of atoms down to the nano-Kelvin regime, these methods fail for molecules due to their rich internal structure.

A team of scientists in the Quantum Dynamics Division of Prof. Gerhard Rempe at the Max-Planck-Institute of Quantum Optics has now developed a cooling procedure – the so-called optoelectrical Sisyphus cooling – which for the first time offers the potential to reach these ultralow temperatures even for complex polyatomic molecules (Nature, AOP, 14 November 2012).

The essential progress in the cooling of atomic gases came with the development of laser cooling techniques. Here, atoms are irradiated with laser light whose energy is slightly below the excitation energy of an electronic transition. Atoms propagating towards the laser beams come into resonance as a result of the Doppler-effect, causing them to become excited and experience a slowing force in the direction of the laser. This method is the basis for the application of subsequent cooling techniques that bring the temperatures down to the nano-Kelvin regime where the atomic gases can form new and exotic phases of matter.

For polyatomic molecules, the principle of laser cooling can no longer work due to the much greater number of excited states: each electronic state is composed of a large number of vibrational and rotational substates. However, a majority of molecules have an alternative property which can be efficiently used for cooling: as the electrons inside a molecule show different affinities towards the various atomic nuclei, the electric charge is not equally distributed. For example, as is widely known, the electrons inside water (H2O) feel more strongly attracted to the oxygen atom than to the hydrogen atoms. As a result the molecules show a negatively and a positively charged pole – they exhibit a strong dipole moment. In a static electric field this leads to a splitting of energy levels – depending on whether the dipole is oriented parallel or anti-parallel with respect to the field direction. This Stark effect (named after the German physicist Johannes Stark) is the key to the optoelectrical Sisyphus cooling technique.

In the experiment described here, the new cooling method has been tested for an ensemble of about a million polar CH3F molecules. The particles are pre-cooled to a temperature of around 400 milli-Kelvin and are trapped inside a special electric trap composed to a large part of a pair of microstructured capacitor plates. The field in the trap centre is homogeneous whereas it is strongly increasing near the boundary due to the microstructures. As the molecular dipoles interact with the electric fields, the Stark effect evokes a splitting of the molecules’ energy levels. A cooling cycle now starts by pumping molecules which are in the centre of the trap to an excited vibrational state using infrared laser light. Shortly thereafter, the excited molecules decay spontaneously back to the ground state by emitting photons. Of particular importance: during this process the alignment of the dipole with respect to the electric field can change.

“For the successful cooling of the molecules two events must take place,” explains Martin Zeppenfeld, who conceived and together with coworkers built the experiment in the course of his doctoral thesis. “First, it is necessary for the molecule to end up in the more strongly aligned of the two Stark levels after the spontaneous decay. Subsequently, the molecule must move into the boundary region of the trap where the electric field is strongly increasing.” When the molecule moves up this ‘hill’ a large amount of its kinetic energy is transformed into potential energy. At this point the orientation of the dipole moment of the molecule is deliberately changed using radiofrequency radiation such that the molecule makes a transition back into the more weakly aligned Stark level. As the interaction with the electric field is now much smaller than before the molecule rolling back into the trap centre gains much less energy than it had lost by mounting the ‘energy hill’. “This is the analogy to the tedious work of the ancient hero Sisyphus,” Zeppenfeld says. “In our scheme the entropy in the system is very efficiently removed by the photons emitted during the spontaneous decay. However, the energy reduction itself is caused by the strong interaction between the molecular dipoles and the electric fields induced by the trap electrodes.”

By repeating the cooling cycle several times the molecules have been cooled down from 390 milli-Kelvin to 29 milli-Kelvin. “The new technique can be applied to a large variety of molecules as long as they are not too big in size and exhibit a large dipole moment,” Barbara Englert points out who works on this experiment as a doctoral student. As for possible applications, she envisions developing molecular circuits in particular in combination with superconducting materials. Rosa Glöckner, another doctoral student, is fascinated by the quantum many body aspects. “Our method offers the potential of subsequently applying other cooling techniques such as evaporative cooling. This should allow the nano-Kelvin regime to be reached which is necessary for the formation of a Bose Einstein Condensate.” It would be of particular interest to look at the behaviour of molecules in optical lattices because the long range of their dipole-dipole interactions would extend over several lattice sites.
There is still a long way to go until such applications become feasible. However, “we have quite a few possibilities to optimize the current experimental set-up, from improving the electric trap or the detection method to using a different species of molecules,” Martin Zeppenfeld points out. “Therefore we should be able to reach much lower temperatures in the near future. But even now our technique provides new ways of investigating polar molecules, for example with high resolution spectroscopy or by investigating collisions between trapped molecules in tuneable homogeneous electric fields.”
[Olivia Meyer-Streng]

Original publication:
M. Zeppenfeld, B.G.U. Englert, R. Glöckner, A. Prehn, M. Mielenz, C. Sommer, L.D. van Buuren, M. Motsch, and G. Rempe
Sisyphus Cooling of Electrically Trapped Polyatomic Molecules
Nature, AOP, 14 November 2012, DOI:10.1038/nature11595
Contact:

Prof. Dr. Gerhard Rempe
Max-Planck-Institute of Quantum Optics
Hans-Kopfermann-Straße 1
85748 Garching
Phone.: +49 - 89 / 32905 -701
Fax: +49 - 89 / 32905 -311
E-mail: gerhard.rempe@mpq.mpg.de

Dipl. Phys. Martin Zeppenfeld
Max-Planck-Institute of Quantum Optics
Hans-Kopfermann-Straße 1
85748 Garching
Phone: +49 - 89 / 32905 -726
Fax: +49 - 89 / 32905 -311
E-mail: martin.zeppenfeld@mpq.mpg.de

Dr. Olivia Meyer-Streng
Press and Public Relations
Max-Planck-Institute of Quantum Optics
Phone: +49 - 89 / 32905 -213
E-mail: olivia.meyer-streng@mpq.mpg.de

Dr. Olivia Meyer-Streng | Max-Planck-Institut
Further information:
http://www.mpq.mpg.de

More articles from Physics and Astronomy:

nachricht Studying fundamental particles in materials
17.01.2017 | Max-Planck-Institut für Struktur und Dynamik der Materie

nachricht Seeing the quantum future... literally
16.01.2017 | University of Sydney

All articles from Physics and Astronomy >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Studying fundamental particles in materials

Laser-driving of semimetals allows creating novel quasiparticle states within condensed matter systems and switching between different states on ultrafast time scales

Studying properties of fundamental particles in condensed matter systems is a promising approach to quantum field theory. Quasiparticles offer the opportunity...

Im Focus: Designing Architecture with Solar Building Envelopes

Among the general public, solar thermal energy is currently associated with dark blue, rectangular collectors on building roofs. Technologies are needed for aesthetically high quality architecture which offer the architect more room for manoeuvre when it comes to low- and plus-energy buildings. With the “ArKol” project, researchers at Fraunhofer ISE together with partners are currently developing two façade collectors for solar thermal energy generation, which permit a high degree of design flexibility: a strip collector for opaque façade sections and a solar thermal blind for transparent sections. The current state of the two developments will be presented at the BAU 2017 trade fair.

As part of the “ArKol – development of architecturally highly integrated façade collectors with heat pipes” project, Fraunhofer ISE together with its partners...

Im Focus: How to inflate a hardened concrete shell with a weight of 80 t

At TU Wien, an alternative for resource intensive formwork for the construction of concrete domes was developed. It is now used in a test dome for the Austrian Federal Railways Infrastructure (ÖBB Infrastruktur).

Concrete shells are efficient structures, but not very resource efficient. The formwork for the construction of concrete domes alone requires a high amount of...

Im Focus: Bacterial Pac Man molecule snaps at sugar

Many pathogens use certain sugar compounds from their host to help conceal themselves against the immune system. Scientists at the University of Bonn have now, in cooperation with researchers at the University of York in the United Kingdom, analyzed the dynamics of a bacterial molecule that is involved in this process. They demonstrate that the protein grabs onto the sugar molecule with a Pac Man-like chewing motion and holds it until it can be used. Their results could help design therapeutics that could make the protein poorer at grabbing and holding and hence compromise the pathogen in the host. The study has now been published in “Biophysical Journal”.

The cells of the mouth, nose and intestinal mucosa produce large quantities of a chemical called sialic acid. Many bacteria possess a special transport system...

Im Focus: Newly proposed reference datasets improve weather satellite data quality

UMD, NOAA collaboration demonstrates suitability of in-orbit datasets for weather satellite calibration

"Traffic and weather, together on the hour!" blasts your local radio station, while your smartphone knows the weather halfway across the world. A network of...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

12V, 48V, high-voltage – trends in E/E automotive architecture

10.01.2017 | Event News

2nd Conference on Non-Textual Information on 10 and 11 May 2017 in Hannover

09.01.2017 | Event News

Nothing will happen without batteries making it happen!

05.01.2017 | Event News

 
Latest News

Water - as the underlying driver of the Earth’s carbon cycle

17.01.2017 | Earth Sciences

Satellite-based Laser Measurement Technology against Climate Change

17.01.2017 | Machine Engineering

Studying fundamental particles in materials

17.01.2017 | Physics and Astronomy

VideoLinks
B2B-VideoLinks
More VideoLinks >>>