Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

A Simple Quantum Dynamics Problem?

15.07.2010
Research reported in The Journal of Chemical Physics, which is published by the American Institute of Physics, provides the first real-time measurements of the time dependence of the individual steps of dissociation of a complex consisting of two rare gas atoms and a halogen molecule.

"The goal of this work is to provide a test case for quantum dynamics theory," says author Kenneth C. Janda of the University of California, Irvine. "It is a problem that is easy, but not too easy, in the sense that a fundamental quantum dynamics explanation is within reach."

Researchers cooled a mixture of helium, neon, and bromine by spraying it through a nozzle, resulting in a stream of gas particles traveling at the same speed. This created a very low temperature in a moving frame of reference -- the particles were stationary relative to one another and condensed to form Ne(2)Br(2) tetrahedral complexes. After the bromine molecule was excited with a laser pulse, the dissociation of the complex over a period of tens of picoseconds was observed spectroscopically. Adding 16 quanta of vibrational energy to the bromine-stretching vibration resulted in rapid direct dissociation. The two Ne atoms dissociated without interacting with each other. However, with slightly higher vibrational excitation, a 23-quanta boost, the bromine anharmonicity led to sharing of the kinetic energy between the Ne atoms and a much more complicated dissociation mechanism.

"For 23 quanta, the first transfer of vibration fails to knock off one of the neon atoms 80 percent of the time," says Janda. "Instead a tiny liquid drop is formed, allowing a neon atom to move in a direct line with the bromine atoms. The next vibration shoots it off like a pool stick hitting the cue ball."

The article "Real-time dissociation dynamics of the Ne2Br2 van der Waals complex" by Jordan M. Pio, Molly A. Taylor, Wytze E. van der Veer, Craig R. Bieler, Jose A. Cabrera, and Kenneth C. Janda was published online in The Journal of Chemical Physics on July 7, 2010. See: http://link.aip.org/link/JCPSA6/v133/i1/p014305/s1

Journalists may request a free PDF of this article by contacting jbardi@aip.org

NOTE: An image is available for journalists. Please contact jbardi@aip.org

Figure Caption: "Step-by-step dissociation of Ne2Br2."

ABOUT THE JOURNAL OF CHEMICAL PHYSICS
The Journal of Chemical Physics publishes concise and definitive reports of significant research in methods and applications of chemical physics. Innovative research in traditional areas of chemical physics such as spectroscopy, kinetics, statistical mechanics, and quantum mechanics continue to be areas of interest to readers of JCP. In addition, newer areas such as polymers, materials, surfaces/interfaces, information theory, and systems of biological relevance are of increasing importance. Routine applications of chemical physics techniques may not be appropriate for JCP. Content is published online daily, collected into four monthly online and printed issues (48 issues per year); the journal is published by the American Institute of Physics. See: http://jcp.aip.org/
ABOUT AIP
The American Institute of Physics is a federation of 10 physical science societies representing more than 135,000 scientists, engineers, and educators and is one of the world's largest publishers of scientific information in the physical sciences. Offering partnership solutions for scientific societies and for similar organizations in science and engineering, AIP is a leader in the field of electronic publishing of scholarly journals. AIP publishes 12 journals (some of which are the most highly cited in their respective fields), two magazines, including its flagship publication Physics Today; and the AIP Conference Proceedings series. Its online publishing platform Scitation hosts nearly two million articles from more than 185 scholarly journals and other publications of 28 learned society publishers.

Jason Socrates Bardi | Newswise Science News
Further information:
http://www.aip.org

More articles from Physics and Astronomy:

nachricht First Juno science results supported by University of Leicester's Jupiter 'forecast'
26.05.2017 | University of Leicester

nachricht Measured for the first time: Direction of light waves changed by quantum effect
24.05.2017 | Vienna University of Technology

All articles from Physics and Astronomy >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Can the immune system be boosted against Staphylococcus aureus by delivery of messenger RNA?

Staphylococcus aureus is a feared pathogen (MRSA, multi-resistant S. aureus) due to frequent resistances against many antibiotics, especially in hospital infections. Researchers at the Paul-Ehrlich-Institut have identified immunological processes that prevent a successful immune response directed against the pathogenic agent. The delivery of bacterial proteins with RNA adjuvant or messenger RNA (mRNA) into immune cells allows the re-direction of the immune response towards an active defense against S. aureus. This could be of significant importance for the development of an effective vaccine. PLOS Pathogens has published these research results online on 25 May 2017.

Staphylococcus aureus (S. aureus) is a bacterium that colonizes by far more than half of the skin and the mucosa of adults, usually without causing infections....

Im Focus: A quantum walk of photons

Physicists from the University of Würzburg are capable of generating identical looking single light particles at the push of a button. Two new studies now demonstrate the potential this method holds.

The quantum computer has fuelled the imagination of scientists for decades: It is based on fundamentally different phenomena than a conventional computer....

Im Focus: Turmoil in sluggish electrons’ existence

An international team of physicists has monitored the scattering behaviour of electrons in a non-conducting material in real-time. Their insights could be beneficial for radiotherapy.

We can refer to electrons in non-conducting materials as ‘sluggish’. Typically, they remain fixed in a location, deep inside an atomic composite. It is hence...

Im Focus: Wafer-thin Magnetic Materials Developed for Future Quantum Technologies

Two-dimensional magnetic structures are regarded as a promising material for new types of data storage, since the magnetic properties of individual molecular building blocks can be investigated and modified. For the first time, researchers have now produced a wafer-thin ferrimagnet, in which molecules with different magnetic centers arrange themselves on a gold surface to form a checkerboard pattern. Scientists at the Swiss Nanoscience Institute at the University of Basel and the Paul Scherrer Institute published their findings in the journal Nature Communications.

Ferrimagnets are composed of two centers which are magnetized at different strengths and point in opposing directions. Two-dimensional, quasi-flat ferrimagnets...

Im Focus: World's thinnest hologram paves path to new 3-D world

Nano-hologram paves way for integration of 3-D holography into everyday electronics

An Australian-Chinese research team has created the world's thinnest hologram, paving the way towards the integration of 3D holography into everyday...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Marine Conservation: IASS Contributes to UN Ocean Conference in New York on 5-9 June

24.05.2017 | Event News

AWK Aachen Machine Tool Colloquium 2017: Internet of Production for Agile Enterprises

23.05.2017 | Event News

Dortmund MST Conference presents Individualized Healthcare Solutions with micro and nanotechnology

22.05.2017 | Event News

 
Latest News

How herpesviruses win the footrace against the immune system

26.05.2017 | Life Sciences

Water forms 'spine of hydration' around DNA, group finds

26.05.2017 | Life Sciences

First Juno science results supported by University of Leicester's Jupiter 'forecast'

26.05.2017 | Physics and Astronomy

VideoLinks
B2B-VideoLinks
More VideoLinks >>>