Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

A revolutionary breakthrough in terahertz remote sensing

12.07.2010
Unique THz 'fingerprints' will identify hidden explosives from a distance

A major breakthrough in remote wave sensing by a team of Rensselaer Polytechnic Institute researchers opens the way for detecting hidden explosives, chemical, biological agents and illegal drugs from a distance of 20 meters.

The new, all-optical system, using terahertz (THz) wave technology, has great potential for homeland security and military uses because it can "see through" clothing and packaging materials and can identify immediately the unique THz "fingerprints" of any hidden materials.

Terahertz waves occupy a large segment of the electromagnetic spectrum between the infrared and microwave bands which can provide imaging and sensing technologies not available through conventional technologies such as x-ray and microwave.

"The potential of THz wave remote sensing has been recognized for years, but practical application has been blocked by the fact that ambient moisture interferes with wave transmission," says Xi-Cheng Zhang, Ph.D., director of the Center for THz Research at Rensselaer.

Dr. Zhang, the J. Erik Jonsson Professor of Science at Rensselaer, is lead author of a paper to be published next week in the journal Nature Photonics. Titled "Broadband terahertz wave remote sensing using coherent manipulation of fluorescence from asymmetrically ionized gases," the paper describes the new system in detail.

The "all optical" technique for remote THz sensing uses laser induced fluorescence, essentially focusing two laser beams together into the air to remotely create a plasma that interacts with a generated THz wave. The plasma fluorescence carries information from a target material to a detector where it is instantly compared with material spectrum in the THz "library," making possible immediate identification of a target material.

"We have shown that you can focus a 800 nm laser beam and a 400 nm laser beam together into the air to remotely create a plasma interacting with the THz wave, and use the plasma fluorescence to convey the information of the THz wave back to the local detector," explains Dr. Zhang.

Repeated terrorist threats and the thwarted Christmas Eve bombing attempt aboard a Northwest airline heightened interest in developing THz remote sensing capabilities, especially from Homeland Security and the Defense Department, which have funded much of the Rensselaer research.

Because THz radiation transmits through almost anything that is not metal or liquid, the waves can "see" through most materials that might be used to conceal explosives or other dangerous materials, such as packaging, corrugated cardboard, clothing, shoes, backpacks and book bags.

Unlike x-rays, THz radiation poses little or no health threat. However, the technique cannot detect materials that might be concealed in body cavities.

"Our technology would not work for owners of an African diamond mine who are interested in the system to stop workers from smuggling out diamonds by swallowing them," Dr. Zhang says.

Though most of the research has been conducted in a laboratory setting, the technology is portable and eventually could be used to check out backpacks or luggage abandoned in an airport for explosives, other dangerous materials or for illegal drugs. On battlefields, it could detect where explosives are hidden.

The fact that each substance has its own unique THz "fingerprint" will show exactly what compound or compounds are being hidden, a capability that is expected to have multiple important and unexpected uses. In the event of a chemical spill, for instance, remote sensing could identify the composition of the toxic mix. Since sensing is remote, no individuals will be needlessly endangered.

"I think I can predict that, within a few years, the THz science and technology will become more available and ready for industrial and defense-related use," predicts Dr. Zhang.

Co-authors of the Nature Photonics paper are Rensselaer's Jingle Liu, Ph.D, Research Associate Professor Jianming Dai, and Professor See-Leang Chin of Quebec's University of Laval.

Contact: Marshall Hoffman, 703 533-3535, 703 801-8602 (mobile), marshall@hoffmanpr.com

Mark Marchand, Rensselaer Polytechnic Institute, 518-276-6098, marchm3@rpi.edu

Marshall Hoffman | EurekAlert!
Further information:
http://www.rpi.edu

More articles from Physics and Astronomy:

nachricht From rocks in Colorado, evidence of a 'chaotic solar system'
23.02.2017 | University of Wisconsin-Madison

nachricht Prediction: More gas-giants will be found orbiting Sun-like stars
22.02.2017 | Carnegie Institution for Science

All articles from Physics and Astronomy >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Breakthrough with a chain of gold atoms

In the field of nanoscience, an international team of physicists with participants from Konstanz has achieved a breakthrough in understanding heat transport

In the field of nanoscience, an international team of physicists with participants from Konstanz has achieved a breakthrough in understanding heat transport

Im Focus: DNA repair: a new letter in the cell alphabet

Results reveal how discoveries may be hidden in scientific “blind spots”

Cells need to repair damaged DNA in our genes to prevent the development of cancer and other diseases. Our cells therefore activate and send “repair-proteins”...

Im Focus: Dresdner scientists print tomorrow’s world

The Fraunhofer IWS Dresden and Technische Universität Dresden inaugurated their jointly operated Center for Additive Manufacturing Dresden (AMCD) with a festive ceremony on February 7, 2017. Scientists from various disciplines perform research on materials, additive manufacturing processes and innovative technologies, which build up components in a layer by layer process. This technology opens up new horizons for component design and combinations of functions. For example during fabrication, electrical conductors and sensors are already able to be additively manufactured into components. They provide information about stress conditions of a product during operation.

The 3D-printing technology, or additive manufacturing as it is often called, has long made the step out of scientific research laboratories into industrial...

Im Focus: Mimicking nature's cellular architectures via 3-D printing

Research offers new level of control over the structure of 3-D printed materials

Nature does amazing things with limited design materials. Grass, for example, can support its own weight, resist strong wind loads, and recover after being...

Im Focus: Three Magnetic States for Each Hole

Nanometer-scale magnetic perforated grids could create new possibilities for computing. Together with international colleagues, scientists from the Helmholtz Zentrum Dresden-Rossendorf (HZDR) have shown how a cobalt grid can be reliably programmed at room temperature. In addition they discovered that for every hole ("antidot") three magnetic states can be configured. The results have been published in the journal "Scientific Reports".

Physicist Dr. Rantej Bali from the HZDR, together with scientists from Singapore and Australia, designed a special grid structure in a thin layer of cobalt in...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Booth and panel discussion – The Lindau Nobel Laureate Meetings at the AAAS 2017 Annual Meeting

13.02.2017 | Event News

Complex Loading versus Hidden Reserves

10.02.2017 | Event News

International Conference on Crystal Growth in Freiburg

09.02.2017 | Event News

 
Latest News

Stingless bees have their nests protected by soldiers

24.02.2017 | Life Sciences

New risk factors for anxiety disorders

24.02.2017 | Life Sciences

MWC 2017: 5G Capital Berlin

24.02.2017 | Trade Fair News

VideoLinks
B2B-VideoLinks
More VideoLinks >>>