Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

A Quick Look at Electron-Boson Coupling

07.10.2014

Berkeley Lab Researchers Use Ultrafast Spectroscopy on Many Body Effects

Imagine being able to tune the properties of a solid material just by flashing pulses of light on it, for example turning an  insulator into a superconductor. That is just one potential payoff down-the-road from the physical phenomenon of electrons and atoms interacting with ultrashort pulses of light.


These trARPES spectra of doped Bi2212 show photoemission intensity before pumping (t= −1 ps) and after pumping (t=1 and t=10 ps). The arrows mark the position of a kink that signifies the coupling of the electrons to bosons.

The technology of ultrafast spectroscopy is a key to understanding this phenomenon and now a new wrinkle to that technology has been introduced by Berkeley Lab researchers.

In a study led by Alessandra Lanzara of Berkeley Lab’s Materials Sciences Division, time- and angle-resolved photoemission spectroscopy (trARPES) was used to directly measure the ultrafast response of electron self-energy – a fundamental quantity used to describe “many-body” interactions in a material – to photo-excitation with near-infrared light in a high-temperature superconductor.

The results demonstrated a link between the phenomena of electron-boson coupling and superconductivity. A boson can be a force-carrying particle, such as a photon, or composite particle of matter, such an atomic nucleus with an even number of protons and neutrons.

“Below the critical temperature of the superconductor, ultrafast excitations triggered a synchronous decrease of electron self-energy and the superconducting energy gap that continued until the gap was quenched,” says Lanzara. “Above the critical temperature of the superconductor, electron–boson coupling was unresponsive to ultrafast excitations. These findings open a new pathway for studying transient self-energy and correlation effects in solids, such as superconductivity.”

The study of electrons and atoms interacting with intense, ultra-short optical pulses is an emerging field of physics because of the roles these interactions play in modulating the electronic structures and properties of materials such as high-temperature superconductors. ARPES has been the long-standing technique of choice for studying the electronic structure of a material.

In this technique, beams of ultraviolet or X-ray light striking the surface or interface of a sample material cause the photoemission of electrons at angles and kinetic energies that can be measured to reveal detailed information about the material’s electronic band structures. While extremely powerful, ARPES lacks the temporal component required for studying band structural dynamics.

Lanzara and a collaboration that included Wentao Zhang, lead author of a paper on this work in Nature Communications, added the necessary temporal component in their trARPES study. They applied this technique to a material known as Bi2212, a compound of bismuth, strontium, calcium, and copper oxide that is considered one of the most promising of high-temperature superconductors.

They energized the Bi2212 samples with femtosecond pulses of near-infrared laser light then probed the results with femtosecond pulses of ultra-violet laser light. The delay time between pump and probe pulses was precisely controlled so that the electron-boson coupling and the superconducting gap could be tracked at the same time.

“In cuprate materials such as Bi2212, there is a known kink in the photoemission pattern that signifies the coupling of the electrons to bosons,” says Zhang. “However, whether this kink is related in any way to superconductivity has been highly debated. Our results show that it is.”

Zhang’s Nature Communications paper, for which Lanzara is the corresponding author, is titled “Ultrafast quenching of electron–boson interaction and superconducting gap in a cuprate.” Other co-authors are Choongyu Hwang, Christopher Smallwood, Tristan Miller, Gregory Affeldt, Koshi Kurashima, Chris Jozwiak, Hiroshi Eisak, Tadashi Adachi, Yoji Koike and Dung-Hai Lee.

This research was supported by the U.S. Department of Energy’s Office of Science.

Additional Information

For more about the research of Alessandra Lanzara go here

Lynn Yarris | Eurek Alert!
Further information:
http://newscenter.lbl.gov/2014/10/06/a-quick-look-at-electron-boson-coupling/

More articles from Physics and Astronomy:

nachricht Unconventional superconductor may be used to create quantum computers of the future
19.02.2018 | Chalmers University of Technology

nachricht Hubble sees Neptune's mysterious shrinking storm
16.02.2018 | NASA/Goddard Space Flight Center

All articles from Physics and Astronomy >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: In best circles: First integrated circuit from self-assembled polymer

For the first time, a team of researchers at the Max-Planck Institute (MPI) for Polymer Research in Mainz, Germany, has succeeded in making an integrated circuit (IC) from just a monolayer of a semiconducting polymer via a bottom-up, self-assembly approach.

In the self-assembly process, the semiconducting polymer arranges itself into an ordered monolayer in a transistor. The transistors are binary switches used...

Im Focus: Demonstration of a single molecule piezoelectric effect

Breakthrough provides a new concept of the design of molecular motors, sensors and electricity generators at nanoscale

Researchers from the Institute of Organic Chemistry and Biochemistry of the CAS (IOCB Prague), Institute of Physics of the CAS (IP CAS) and Palacký University...

Im Focus: Hybrid optics bring color imaging using ultrathin metalenses into focus

For photographers and scientists, lenses are lifesavers. They reflect and refract light, making possible the imaging systems that drive discovery through the microscope and preserve history through cameras.

But today's glass-based lenses are bulky and resist miniaturization. Next-generation technologies, such as ultrathin cameras or tiny microscopes, require...

Im Focus: Stem cell divisions in the adult brain seen for the first time

Scientists from the University of Zurich have succeeded for the first time in tracking individual stem cells and their neuronal progeny over months within the intact adult brain. This study sheds light on how new neurons are produced throughout life.

The generation of new nerve cells was once thought to taper off at the end of embryonic development. However, recent research has shown that the adult brain...

Im Focus: Interference as a new method for cooling quantum devices

Theoretical physicists propose to use negative interference to control heat flow in quantum devices. Study published in Physical Review Letters

Quantum computer parts are sensitive and need to be cooled to very low temperatures. Their tiny size makes them particularly susceptible to a temperature...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

2nd International Conference on High Temperature Shape Memory Alloys (HTSMAs)

15.02.2018 | Event News

Aachen DC Grid Summit 2018

13.02.2018 | Event News

How Global Climate Policy Can Learn from the Energy Transition

12.02.2018 | Event News

 
Latest News

Contacting the molecular world through graphene nanoribbons

19.02.2018 | Materials Sciences

When Proteins Shake Hands

19.02.2018 | Materials Sciences

Cells communicate in a dynamic code

19.02.2018 | Life Sciences

VideoLinks
Science & Research
Overview of more VideoLinks >>>