Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

'Weird science' uncovered inside neutron star

24.02.2011
A University of Alberta astronomer has glimpsed the inner working of a neutron star and found a unique world where the physics can be described as "weird." Craig Heinke's team found the neutron star's core contained a superfluid, a friction-less liquid that could seemingly defy the laws of gravity.

"If you could put some of this superfluid in a jar it would flow up the walls of the container and over the edge," said Heinke.

Heinke says the core of the neutron star also contains a superconductor, a perfect electrical conductor. "An electric current in a superconductor never loses energy—it could keep circulating forever."

These discoveries came about when the researchers used NASA's Chanda space satellite telescope to investigate a sudden temperature drop on one particular neutron star 11,000 light years from Earth. A neutron star is the extremely dense core left behind from an exploding star, or supernova.

Heinke says this neutron star, known as the Cassiopeia A offered the researchers a great opportunity.

"It's only 330 years old," said Heinke. "We've got ringside seats to studying the life cycle of a neutron star from its collapse to its present, cooling off state."

The researchers determined that the neutron star's surface temperature is dropping because its core recently transformed into a superfluid state and is venting off heat in the form of neutrinos, sub atomic particles that flood the universe. Here on Earth our bodies are constantly bombarded by neutrinos, with 100 billion neutrinos passing harmlessly though our eyes every second.

They also found that the neutron star contains a superconductor, the highest temperature (millions of degrees) superconductor known.

This research helps us to better understand the life cycles of stars, as well as the behavior of matter at incredibly high densities.

Heinke is a co-author of the research published this month in the Monthly Notices of the Royal Astronomical Society. The research was led by Peter Shternin (St. Petersburg, Russia).

Brian Murphy | EurekAlert!
Further information:
http://www.ualberta.ca

More articles from Physics and Astronomy:

nachricht Physicists Design Ultrafocused Pulses
27.07.2017 | Universität Innsbruck

nachricht CCNY physicists master unexplored electron property
26.07.2017 | City College of New York

All articles from Physics and Astronomy >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Physicists Design Ultrafocused Pulses

Physicists working with researcher Oriol Romero-Isart devised a new simple scheme to theoretically generate arbitrarily short and focused electromagnetic fields. This new tool could be used for precise sensing and in microscopy.

Microwaves, heat radiation, light and X-radiation are examples for electromagnetic waves. Many applications require to focus the electromagnetic fields to...

Im Focus: Carbon Nanotubes Turn Electrical Current into Light-emitting Quasi-particles

Strong light-matter coupling in these semiconducting tubes may hold the key to electrically pumped lasers

Light-matter quasi-particles can be generated electrically in semiconducting carbon nanotubes. Material scientists and physicists from Heidelberg University...

Im Focus: Flexible proximity sensor creates smart surfaces

Fraunhofer IPA has developed a proximity sensor made from silicone and carbon nanotubes (CNT) which detects objects and determines their position. The materials and printing process used mean that the sensor is extremely flexible, economical and can be used for large surfaces. Industry and research partners can use and further develop this innovation straight away.

At first glance, the proximity sensor appears to be nothing special: a thin, elastic layer of silicone onto which black square surfaces are printed, but these...

Im Focus: 3-D scanning with water

3-D shape acquisition using water displacement as the shape sensor for the reconstruction of complex objects

A global team of computer scientists and engineers have developed an innovative technique that more completely reconstructs challenging 3D objects. An ancient...

Im Focus: Manipulating Electron Spins Without Loss of Information

Physicists have developed a new technique that uses electrical voltages to control the electron spin on a chip. The newly-developed method provides protection from spin decay, meaning that the contained information can be maintained and transmitted over comparatively large distances, as has been demonstrated by a team from the University of Basel’s Department of Physics and the Swiss Nanoscience Institute. The results have been published in Physical Review X.

For several years, researchers have been trying to use the spin of an electron to store and transmit information. The spin of each electron is always coupled...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Clash of Realities 2017: Registration now open. International Conference at TH Köln

26.07.2017 | Event News

Closing the Sustainability Circle: Protection of Food with Biobased Materials

21.07.2017 | Event News

»We are bringing Additive Manufacturing to SMEs«

19.07.2017 | Event News

 
Latest News

Programming cells with computer-like logic

27.07.2017 | Life Sciences

Identified the component that allows a lethal bacteria to spread resistance to antibiotics

27.07.2017 | Life Sciences

Malaria Already Endemic in the Mediterranean by the Roman Period

27.07.2017 | Health and Medicine

VideoLinks
B2B-VideoLinks
More VideoLinks >>>