Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

'Weird science' uncovered inside neutron star

24.02.2011
A University of Alberta astronomer has glimpsed the inner working of a neutron star and found a unique world where the physics can be described as "weird." Craig Heinke's team found the neutron star's core contained a superfluid, a friction-less liquid that could seemingly defy the laws of gravity.

"If you could put some of this superfluid in a jar it would flow up the walls of the container and over the edge," said Heinke.

Heinke says the core of the neutron star also contains a superconductor, a perfect electrical conductor. "An electric current in a superconductor never loses energy—it could keep circulating forever."

These discoveries came about when the researchers used NASA's Chanda space satellite telescope to investigate a sudden temperature drop on one particular neutron star 11,000 light years from Earth. A neutron star is the extremely dense core left behind from an exploding star, or supernova.

Heinke says this neutron star, known as the Cassiopeia A offered the researchers a great opportunity.

"It's only 330 years old," said Heinke. "We've got ringside seats to studying the life cycle of a neutron star from its collapse to its present, cooling off state."

The researchers determined that the neutron star's surface temperature is dropping because its core recently transformed into a superfluid state and is venting off heat in the form of neutrinos, sub atomic particles that flood the universe. Here on Earth our bodies are constantly bombarded by neutrinos, with 100 billion neutrinos passing harmlessly though our eyes every second.

They also found that the neutron star contains a superconductor, the highest temperature (millions of degrees) superconductor known.

This research helps us to better understand the life cycles of stars, as well as the behavior of matter at incredibly high densities.

Heinke is a co-author of the research published this month in the Monthly Notices of the Royal Astronomical Society. The research was led by Peter Shternin (St. Petersburg, Russia).

Brian Murphy | EurekAlert!
Further information:
http://www.ualberta.ca

More articles from Physics and Astronomy:

nachricht Tiny lasers from a gallery of whispers
20.09.2017 | American Institute of Physics

nachricht New quantum phenomena in graphene superlattices
19.09.2017 | Graphene Flagship

All articles from Physics and Astronomy >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Tiny lasers from a gallery of whispers

New technique promises tunable laser devices

Whispering gallery mode (WGM) resonators are used to make tiny micro-lasers, sensors, switches, routers and other devices. These tiny structures rely on a...

Im Focus: Ultrafast snapshots of relaxing electrons in solids

Using ultrafast flashes of laser and x-ray radiation, scientists at the Max Planck Institute of Quantum Optics (Garching, Germany) took snapshots of the briefest electron motion inside a solid material to date. The electron motion lasted only 750 billionths of the billionth of a second before it fainted, setting a new record of human capability to capture ultrafast processes inside solids!

When x-rays shine onto solid materials or large molecules, an electron is pushed away from its original place near the nucleus of the atom, leaving a hole...

Im Focus: Quantum Sensors Decipher Magnetic Ordering in a New Semiconducting Material

For the first time, physicists have successfully imaged spiral magnetic ordering in a multiferroic material. These materials are considered highly promising candidates for future data storage media. The researchers were able to prove their findings using unique quantum sensors that were developed at Basel University and that can analyze electromagnetic fields on the nanometer scale. The results – obtained by scientists from the University of Basel’s Department of Physics, the Swiss Nanoscience Institute, the University of Montpellier and several laboratories from University Paris-Saclay – were recently published in the journal Nature.

Multiferroics are materials that simultaneously react to electric and magnetic fields. These two properties are rarely found together, and their combined...

Im Focus: Fast, convenient & standardized: New lab innovation for automated tissue engineering & drug

MBM ScienceBridge GmbH successfully negotiated a license agreement between University Medical Center Göttingen (UMG) and the biotech company Tissue Systems Holding GmbH about commercial use of a multi-well tissue plate for automated and reliable tissue engineering & drug testing.

MBM ScienceBridge GmbH successfully negotiated a license agreement between University Medical Center Göttingen (UMG) and the biotech company Tissue Systems...

Im Focus: Silencing bacteria

HZI researchers pave the way for new agents that render hospital pathogens mute

Pathogenic bacteria are becoming resistant to common antibiotics to an ever increasing degree. One of the most difficult germs is Pseudomonas aeruginosa, a...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

“Lasers in Composites Symposium” in Aachen – from Science to Application

19.09.2017 | Event News

I-ESA 2018 – Call for Papers

12.09.2017 | Event News

EMBO at Basel Life, a new conference on current and emerging life science research

06.09.2017 | Event News

 
Latest News

Molecular Force Sensors

20.09.2017 | Life Sciences

Producing electricity during flight

20.09.2017 | Power and Electrical Engineering

Tiny lasers from a gallery of whispers

20.09.2017 | Physics and Astronomy

VideoLinks
B2B-VideoLinks
More VideoLinks >>>