Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

'Weird science' uncovered inside neutron star

24.02.2011
A University of Alberta astronomer has glimpsed the inner working of a neutron star and found a unique world where the physics can be described as "weird." Craig Heinke's team found the neutron star's core contained a superfluid, a friction-less liquid that could seemingly defy the laws of gravity.

"If you could put some of this superfluid in a jar it would flow up the walls of the container and over the edge," said Heinke.

Heinke says the core of the neutron star also contains a superconductor, a perfect electrical conductor. "An electric current in a superconductor never loses energy—it could keep circulating forever."

These discoveries came about when the researchers used NASA's Chanda space satellite telescope to investigate a sudden temperature drop on one particular neutron star 11,000 light years from Earth. A neutron star is the extremely dense core left behind from an exploding star, or supernova.

Heinke says this neutron star, known as the Cassiopeia A offered the researchers a great opportunity.

"It's only 330 years old," said Heinke. "We've got ringside seats to studying the life cycle of a neutron star from its collapse to its present, cooling off state."

The researchers determined that the neutron star's surface temperature is dropping because its core recently transformed into a superfluid state and is venting off heat in the form of neutrinos, sub atomic particles that flood the universe. Here on Earth our bodies are constantly bombarded by neutrinos, with 100 billion neutrinos passing harmlessly though our eyes every second.

They also found that the neutron star contains a superconductor, the highest temperature (millions of degrees) superconductor known.

This research helps us to better understand the life cycles of stars, as well as the behavior of matter at incredibly high densities.

Heinke is a co-author of the research published this month in the Monthly Notices of the Royal Astronomical Society. The research was led by Peter Shternin (St. Petersburg, Russia).

Brian Murphy | EurekAlert!
Further information:
http://www.ualberta.ca

More articles from Physics and Astronomy:

nachricht SF State astronomer searches for signs of life on Wolf 1061 exoplanet
20.01.2017 | San Francisco State University

nachricht Molecule flash mob
19.01.2017 | Technische Universität Wien

All articles from Physics and Astronomy >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Traffic jam in empty space

New success for Konstanz physicists in studying the quantum vacuum

An important step towards a completely new experimental access to quantum physics has been made at University of Konstanz. The team of scientists headed by...

Im Focus: How gut bacteria can make us ill

HZI researchers decipher infection mechanisms of Yersinia and immune responses of the host

Yersiniae cause severe intestinal infections. Studies using Yersinia pseudotuberculosis as a model organism aim to elucidate the infection mechanisms of these...

Im Focus: Interfacial Superconductivity: Magnetic and superconducting order revealed simultaneously

Researchers from the University of Hamburg in Germany, in collaboration with colleagues from the University of Aarhus in Denmark, have synthesized a new superconducting material by growing a few layers of an antiferromagnetic transition-metal chalcogenide on a bismuth-based topological insulator, both being non-superconducting materials.

While superconductivity and magnetism are generally believed to be mutually exclusive, surprisingly, in this new material, superconducting correlations...

Im Focus: Studying fundamental particles in materials

Laser-driving of semimetals allows creating novel quasiparticle states within condensed matter systems and switching between different states on ultrafast time scales

Studying properties of fundamental particles in condensed matter systems is a promising approach to quantum field theory. Quasiparticles offer the opportunity...

Im Focus: Designing Architecture with Solar Building Envelopes

Among the general public, solar thermal energy is currently associated with dark blue, rectangular collectors on building roofs. Technologies are needed for aesthetically high quality architecture which offer the architect more room for manoeuvre when it comes to low- and plus-energy buildings. With the “ArKol” project, researchers at Fraunhofer ISE together with partners are currently developing two façade collectors for solar thermal energy generation, which permit a high degree of design flexibility: a strip collector for opaque façade sections and a solar thermal blind for transparent sections. The current state of the two developments will be presented at the BAU 2017 trade fair.

As part of the “ArKol – development of architecturally highly integrated façade collectors with heat pipes” project, Fraunhofer ISE together with its partners...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Sustainable Water use in Agriculture in Eastern Europe and Central Asia

19.01.2017 | Event News

12V, 48V, high-voltage – trends in E/E automotive architecture

10.01.2017 | Event News

2nd Conference on Non-Textual Information on 10 and 11 May 2017 in Hannover

09.01.2017 | Event News

 
Latest News

Helmholtz International Fellow Award for Sarah Amalia Teichmann

20.01.2017 | Awards Funding

An innovative high-performance material: biofibers made from green lacewing silk

20.01.2017 | Materials Sciences

Ion treatments for cardiac arrhythmia — Non-invasive alternative to catheter-based surgery

20.01.2017 | Life Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>