Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

'Dead' galaxies aren't so dead after all, U-M researchers find

01.06.2011
University of Michigan astronomers examined old galaxies and were surprised to discover that they are still making new stars. The results provide insights into how galaxies evolve with time.

U-M research fellow Alyson Ford and astronomy professor Joel Bregman presented their findings May 31 at a meeting of the Canadian Astronomical Society in London, Ontario.

Using the Wide Field Camera 3 on the Hubble Space Telescope, they saw individual young stars and star clusters in four galaxies that are about 40 million light years away. One light year is about 5.9 trillion miles.

"Scientists thought these were dead galaxies that had finished making stars a long time ago," Ford said. "But we've shown that they are still alive and are forming stars at a fairly low level."

Galaxies generally come in two types: spiral galaxies, like our own Milky Way, and elliptical galaxies. The stars in spiral galaxies lie in a disk that also contains cold, dense gas, from which new stars are regularly formed at a rate of about one sun per year.

Stars in elliptical galaxies, on the other hand, are nearly all billions of years old. These galaxies contain stars that orbit every which way, like bees around a beehive. Ellipticals have little, if any, cold gas, and no star formation was known.

"Astronomers previously studied star formation by looking at all of the light from an elliptical galaxy at once, because we usually can't see individual stars," Ford said. "Our trick is to make sensitive ultraviolet images with the Hubble Space Telescope, which allows us to see individual stars."

The technique enabled the astronomers to observe star formation, even if it is as little as one sun every 100,000 years.

Ford and Bregman are working to understand the stellar birth rate and likelihood of stars forming in groups within ellipticals. In the Milky Way, stars usually form in associations containing from tens to 100,000 stars. In elliptical galaxies, conditions are different because there is no disk of cold material to form stars.

"We were confused by some of the colors of objects in our images until we realized that they must be star clusters, so most of the star formation happens in associations," Ford said.

The team's breakthrough came when they observed Messier 105, a normal elliptical galaxy that is 34 million light years away, in the constellation Leo. Though there had been no previous indication of star formation in Messier 105, Ford and Bregman saw a few bright, very blue stars, resembling a single star 10 to 20 times the mass of the sun.

They also saw objects that aren't blue enough to be single stars, but instead are clusters of many stars. When accounting for these clusters, stars are forming in Messier 105 at an average rate of one sun every 10,000 years, Ford and Bregman concluded. "This is not just a burst of star formation but a continuous process," Ford said.

These findings raise new mysteries, such as the origin of the gas that forms the stars.

"We're at the beginning of a new line of research, which is very exciting, but at times confusing," Bregman said. "We hope to follow up this discovery with new observations that will really give us insight into the process of star formation in these 'dead' galaxies."

Contact: Jim Erickson
Phone: (734) 647-1842

Jim Erickson | EurekAlert!
Further information:
http://ns.umich.edu/htdocs/releases/story.php?id=8421
http://www.umich.edu

More articles from Physics and Astronomy:

nachricht Measured for the first time: Direction of light waves changed by quantum effect
24.05.2017 | Vienna University of Technology

nachricht Physicists discover mechanism behind granular capillary effect
24.05.2017 | University of Cologne

All articles from Physics and Astronomy >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: A quantum walk of photons

Physicists from the University of Würzburg are capable of generating identical looking single light particles at the push of a button. Two new studies now demonstrate the potential this method holds.

The quantum computer has fuelled the imagination of scientists for decades: It is based on fundamentally different phenomena than a conventional computer....

Im Focus: Turmoil in sluggish electrons’ existence

An international team of physicists has monitored the scattering behaviour of electrons in a non-conducting material in real-time. Their insights could be beneficial for radiotherapy.

We can refer to electrons in non-conducting materials as ‘sluggish’. Typically, they remain fixed in a location, deep inside an atomic composite. It is hence...

Im Focus: Wafer-thin Magnetic Materials Developed for Future Quantum Technologies

Two-dimensional magnetic structures are regarded as a promising material for new types of data storage, since the magnetic properties of individual molecular building blocks can be investigated and modified. For the first time, researchers have now produced a wafer-thin ferrimagnet, in which molecules with different magnetic centers arrange themselves on a gold surface to form a checkerboard pattern. Scientists at the Swiss Nanoscience Institute at the University of Basel and the Paul Scherrer Institute published their findings in the journal Nature Communications.

Ferrimagnets are composed of two centers which are magnetized at different strengths and point in opposing directions. Two-dimensional, quasi-flat ferrimagnets...

Im Focus: World's thinnest hologram paves path to new 3-D world

Nano-hologram paves way for integration of 3-D holography into everyday electronics

An Australian-Chinese research team has created the world's thinnest hologram, paving the way towards the integration of 3D holography into everyday...

Im Focus: Using graphene to create quantum bits

In the race to produce a quantum computer, a number of projects are seeking a way to create quantum bits -- or qubits -- that are stable, meaning they are not much affected by changes in their environment. This normally needs highly nonlinear non-dissipative elements capable of functioning at very low temperatures.

In pursuit of this goal, researchers at EPFL's Laboratory of Photonics and Quantum Measurements LPQM (STI/SB), have investigated a nonlinear graphene-based...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Marine Conservation: IASS Contributes to UN Ocean Conference in New York on 5-9 June

24.05.2017 | Event News

AWK Aachen Machine Tool Colloquium 2017: Internet of Production for Agile Enterprises

23.05.2017 | Event News

Dortmund MST Conference presents Individualized Healthcare Solutions with micro and nanotechnology

22.05.2017 | Event News

 
Latest News

Physicists discover mechanism behind granular capillary effect

24.05.2017 | Physics and Astronomy

Measured for the first time: Direction of light waves changed by quantum effect

24.05.2017 | Physics and Astronomy

Marine Conservation: IASS Contributes to UN Ocean Conference in New York on 5-9 June

24.05.2017 | Event News

VideoLinks
B2B-VideoLinks
More VideoLinks >>>