Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

'Dead' galaxies aren't so dead after all, U-M researchers find

01.06.2011
University of Michigan astronomers examined old galaxies and were surprised to discover that they are still making new stars. The results provide insights into how galaxies evolve with time.

U-M research fellow Alyson Ford and astronomy professor Joel Bregman presented their findings May 31 at a meeting of the Canadian Astronomical Society in London, Ontario.

Using the Wide Field Camera 3 on the Hubble Space Telescope, they saw individual young stars and star clusters in four galaxies that are about 40 million light years away. One light year is about 5.9 trillion miles.

"Scientists thought these were dead galaxies that had finished making stars a long time ago," Ford said. "But we've shown that they are still alive and are forming stars at a fairly low level."

Galaxies generally come in two types: spiral galaxies, like our own Milky Way, and elliptical galaxies. The stars in spiral galaxies lie in a disk that also contains cold, dense gas, from which new stars are regularly formed at a rate of about one sun per year.

Stars in elliptical galaxies, on the other hand, are nearly all billions of years old. These galaxies contain stars that orbit every which way, like bees around a beehive. Ellipticals have little, if any, cold gas, and no star formation was known.

"Astronomers previously studied star formation by looking at all of the light from an elliptical galaxy at once, because we usually can't see individual stars," Ford said. "Our trick is to make sensitive ultraviolet images with the Hubble Space Telescope, which allows us to see individual stars."

The technique enabled the astronomers to observe star formation, even if it is as little as one sun every 100,000 years.

Ford and Bregman are working to understand the stellar birth rate and likelihood of stars forming in groups within ellipticals. In the Milky Way, stars usually form in associations containing from tens to 100,000 stars. In elliptical galaxies, conditions are different because there is no disk of cold material to form stars.

"We were confused by some of the colors of objects in our images until we realized that they must be star clusters, so most of the star formation happens in associations," Ford said.

The team's breakthrough came when they observed Messier 105, a normal elliptical galaxy that is 34 million light years away, in the constellation Leo. Though there had been no previous indication of star formation in Messier 105, Ford and Bregman saw a few bright, very blue stars, resembling a single star 10 to 20 times the mass of the sun.

They also saw objects that aren't blue enough to be single stars, but instead are clusters of many stars. When accounting for these clusters, stars are forming in Messier 105 at an average rate of one sun every 10,000 years, Ford and Bregman concluded. "This is not just a burst of star formation but a continuous process," Ford said.

These findings raise new mysteries, such as the origin of the gas that forms the stars.

"We're at the beginning of a new line of research, which is very exciting, but at times confusing," Bregman said. "We hope to follow up this discovery with new observations that will really give us insight into the process of star formation in these 'dead' galaxies."

Contact: Jim Erickson
Phone: (734) 647-1842

Jim Erickson | EurekAlert!
Further information:
http://ns.umich.edu/htdocs/releases/story.php?id=8421
http://www.umich.edu

More articles from Physics and Astronomy:

nachricht Igniting a solar flare in the corona with lower-atmosphere kindling
29.03.2017 | New Jersey Institute of Technology

nachricht NASA spacecraft investigate clues in radiation belts
28.03.2017 | NASA/Goddard Space Flight Center

All articles from Physics and Astronomy >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: A Challenging European Research Project to Develop New Tiny Microscopes

The Institute of Semiconductor Technology and the Institute of Physical and Theoretical Chemistry, both members of the Laboratory for Emerging Nanometrology (LENA), at Technische Universität Braunschweig are partners in a new European research project entitled ChipScope, which aims to develop a completely new and extremely small optical microscope capable of observing the interior of living cells in real time. A consortium of 7 partners from 5 countries will tackle this issue with very ambitious objectives during a four-year research program.

To demonstrate the usefulness of this new scientific tool, at the end of the project the developed chip-sized microscope will be used to observe in real-time...

Im Focus: Giant Magnetic Fields in the Universe

Astronomers from Bonn and Tautenburg in Thuringia (Germany) used the 100-m radio telescope at Effelsberg to observe several galaxy clusters. At the edges of these large accumulations of dark matter, stellar systems (galaxies), hot gas, and charged particles, they found magnetic fields that are exceptionally ordered over distances of many million light years. This makes them the most extended magnetic fields in the universe known so far.

The results will be published on March 22 in the journal „Astronomy & Astrophysics“.

Galaxy clusters are the largest gravitationally bound structures in the universe. With a typical extent of about 10 million light years, i.e. 100 times the...

Im Focus: Tracing down linear ubiquitination

Researchers at the Goethe University Frankfurt, together with partners from the University of Tübingen in Germany and Queen Mary University as well as Francis Crick Institute from London (UK) have developed a novel technology to decipher the secret ubiquitin code.

Ubiquitin is a small protein that can be linked to other cellular proteins, thereby controlling and modulating their functions. The attachment occurs in many...

Im Focus: Perovskite edges can be tuned for optoelectronic performance

Layered 2D material improves efficiency for solar cells and LEDs

In the eternal search for next generation high-efficiency solar cells and LEDs, scientists at Los Alamos National Laboratory and their partners are creating...

Im Focus: Polymer-coated silicon nanosheets as alternative to graphene: A perfect team for nanoelectronics

Silicon nanosheets are thin, two-dimensional layers with exceptional optoelectronic properties very similar to those of graphene. Albeit, the nanosheets are less stable. Now researchers at the Technical University of Munich (TUM) have, for the first time ever, produced a composite material combining silicon nanosheets and a polymer that is both UV-resistant and easy to process. This brings the scientists a significant step closer to industrial applications like flexible displays and photosensors.

Silicon nanosheets are thin, two-dimensional layers with exceptional optoelectronic properties very similar to those of graphene. Albeit, the nanosheets are...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

International Land Use Symposium ILUS 2017: Call for Abstracts and Registration open

20.03.2017 | Event News

CONNECT 2017: International congress on connective tissue

14.03.2017 | Event News

ICTM Conference: Turbine Construction between Big Data and Additive Manufacturing

07.03.2017 | Event News

 
Latest News

Researchers shoot for success with simulations of laser pulse-material interactions

29.03.2017 | Materials Sciences

Igniting a solar flare in the corona with lower-atmosphere kindling

29.03.2017 | Physics and Astronomy

As sea level rises, much of Honolulu and Waikiki vulnerable to groundwater inundation

29.03.2017 | Earth Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>