Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Wistar Scientists Develop Gene Test to Accurately Classify Brain Tumors

19.02.2014
Computer Model of Gene Transcript Variants May Aid Doctors in Personalizing Therapies

Scientists at The Wistar Institute have developed a mathematical method for classifying forms of glioblastoma, an aggressive and deadly type of brain cancer, through variations in the way these tumor cells “read” genes.

Their system was capable of predicting the subclasses of glioblastoma tumors with 92 percent accuracy. With further testing, this system could enable physicians to accurately predict which forms of therapy would benefit their patients the most.

Their research was performed in collaboration with Donald M. O’Rourke, M.D., a neurosurgeon at the University of Pennsylvania Brain Tumor Center, who provided the glioblastoma samples necessary to validate the Wistar computer model. Their findings were published online in the journal Nucleic Acids Research.

“It has become increasingly obvious that understanding the molecular makeup of each patient tumor is the key to personalizing cancer treatments for individual patients,” said Ramana Davuluri, Ph.D., Wistar’s Tobin Kestenbaum Family Professor and associate director of Wistar’s Center for Systems and Computational Biology. “We have developed a computational model that will allow us to predict a patient’s exact variety of glioblastoma based on the transcript variants a given tumor produces.”

“A gene can produce multiple variants, in the form of transcript variants and protein-isoforms. We found that when you use the gene expression information at variant/isoform-level, the statistical analyses recaptured the four known molecular subgroups but with a significant survival difference among the refined subgroups.” said Davuluri. “Using patient data, we found that certain subgroups when combined with patient age, for example, could predict better outcomes using a given course of therapy.”

“As more targeted therapies come into use, this is exactly the sort of information clinicians will need to provide the best hope of survival for their patients,” Davuluri said. “In time, we think this could form the basis of a clinical test that will help oncologists decide a patient’s course of treatment.”

Glioblastoma multiforme is the most lethal of the malignant adult brain tumors, and accounts for over 50 percent of all cases of brain cancer. Even with aggressive combination therapies, the prognosis remains bleak, with median patient survival of 15 months after diagnosis. The disease is also molecularly heterogeneous, that is, composed of subtypes that are not genetically alike or produce the same array of proteins. Genetic data from the Cancer Genome Atlas (TCGA) consortium has led to the identification of four subtypes of glioblastoma, but Davuluri and his researchers sought to find a way to quickly identify which patient was which subtype.

In previous studies, Davuluri and his Wistar colleagues have established how changes in the way a cell reads its own DNA can create multiple variations of a single protein. These variant proteins are called isoforms, and they are produced as cells alter how they transcribe a given gene into RNA. Slight changes in how the cellular machine reads a gene can result in protein isoforms with subtle differences in enzymatic activity or longevity.

For example, their earlier research determined how human brains produce different isoforms of specific proteins throughout their lives. Developing fetal brains produce different isoforms of certain genes than adult brains. They also found that changes that trigger the production of the wrong isoform at the wrong time could lead to cancer.

In the Nucleic Acids Research study, the researchers combined assays of these protein isoforms with a computer model they call PIGExClass, or the Platform-independent Isoform-level Gene-EXpression based Classification-system. To categorize glioblastomas with PIGExClass, Davuluri and his colleagues first began with Cancer Genome Atlas data to develop a set of 121 isoform variants whose combination of differences could denote a specific subtype of the brain cancer. PIGExClass is, essentially, a software that ranks gene isoform data into sets based on a set of pre-determined values. The researchers found that, by using this classification system, they could predict the subtype of glioblastoma in the database with 92 percent accuracy.

“When we knew what combination of isoforms could create a specific signature for each type of glioblastoma, we could then create a simple laboratory assay that would look for these differences in patient samples,” Davuluri said. “In this case the test would measure variations in the RNA abundance associated with these 121 isoforms that make up the signature.”

With this new assay in hand, the researchers validated their research using 206 independent samples from the University of Pennsylvania Brain Tumor Tissue Bank. According to Davuluri, when you accounted for differences in the makeup of the pools of patients between TCGA and Penn, the accuracy of the assay remained the same.

Co-authors include Luke Macyszyn, M.D., a neurosurgery resident at the University of Pennsylvania, and Wistar scientists Sharmistha Pal, Ph.D., Yingtao Bi, Ph.D., and Professor Louise C. Showe, Ph.D. This study was partially funded by the National Institutes of Health [award number R01LM011297].

The Wistar Institute is an international leader in biomedical research with special expertise in cancer research and vaccine development. Founded in 1892 as the first independent nonprofit biomedical research institute in the country, Wistar has long held the prestigious Cancer Center designation from the National Cancer Institute. The Institute works actively to ensure that research advances move from the laboratory to the clinic as quickly as possible. The Wistar Institute: Today’s Discoveries – Tomorrow’s Cures.

Greg Lester | EurekAlert!
Further information:
http://www.wistar.org

More articles from Health and Medicine:

nachricht Chronic stress induces fatal organ dysfunctions via a new neural circuit
21.08.2017 | Hokkaido University

nachricht New malaria analysis method reveals disease severity in minutes
14.08.2017 | University of British Columbia

All articles from Health and Medicine >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Fizzy soda water could be key to clean manufacture of flat wonder material: Graphene

Whether you call it effervescent, fizzy, or sparkling, carbonated water is making a comeback as a beverage. Aside from quenching thirst, researchers at the University of Illinois at Urbana-Champaign have discovered a new use for these "bubbly" concoctions that will have major impact on the manufacturer of the world's thinnest, flattest, and one most useful materials -- graphene.

As graphene's popularity grows as an advanced "wonder" material, the speed and quality at which it can be manufactured will be paramount. With that in mind,...

Im Focus: Exotic quantum states made from light: Physicists create optical “wells” for a super-photon

Physicists at the University of Bonn have managed to create optical hollows and more complex patterns into which the light of a Bose-Einstein condensate flows. The creation of such highly low-loss structures for light is a prerequisite for complex light circuits, such as for quantum information processing for a new generation of computers. The researchers are now presenting their results in the journal Nature Photonics.

Light particles (photons) occur as tiny, indivisible portions. Many thousands of these light portions can be merged to form a single super-photon if they are...

Im Focus: Circular RNA linked to brain function

For the first time, scientists have shown that circular RNA is linked to brain function. When a RNA molecule called Cdr1as was deleted from the genome of mice, the animals had problems filtering out unnecessary information – like patients suffering from neuropsychiatric disorders.

While hundreds of circular RNAs (circRNAs) are abundant in mammalian brains, one big question has remained unanswered: What are they actually good for? In the...

Im Focus: RAVAN CubeSat measures Earth's outgoing energy

An experimental small satellite has successfully collected and delivered data on a key measurement for predicting changes in Earth's climate.

The Radiometer Assessment using Vertically Aligned Nanotubes (RAVAN) CubeSat was launched into low-Earth orbit on Nov. 11, 2016, in order to test new...

Im Focus: Scientists shine new light on the “other high temperature superconductor”

A study led by scientists of the Max Planck Institute for the Structure and Dynamics of Matter (MPSD) at the Center for Free-Electron Laser Science in Hamburg presents evidence of the coexistence of superconductivity and “charge-density-waves” in compounds of the poorly-studied family of bismuthates. This observation opens up new perspectives for a deeper understanding of the phenomenon of high-temperature superconductivity, a topic which is at the core of condensed matter research since more than 30 years. The paper by Nicoletti et al has been published in the PNAS.

Since the beginning of the 20th century, superconductivity had been observed in some metals at temperatures only a few degrees above the absolute zero (minus...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Call for Papers – ICNFT 2018, 5th International Conference on New Forming Technology

16.08.2017 | Event News

Sustainability is the business model of tomorrow

04.08.2017 | Event News

Clash of Realities 2017: Registration now open. International Conference at TH Köln

26.07.2017 | Event News

 
Latest News

Nagoya physicists resolve long-standing mystery of structure-less transition

21.08.2017 | Materials Sciences

Chronic stress induces fatal organ dysfunctions via a new neural circuit

21.08.2017 | Health and Medicine

Scientists from the MSU studied new liquid-crystalline photochrom

21.08.2017 | Materials Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>