Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Western University researchers make breakthrough in arthritis research

04.12.2012
Researchers at Western University have made a breakthrough that could lead to a better understanding of a common form of arthritis that, until now, has eluded scientists.

According to The Arthritis Society, the second most common form of arthritis after osteoarthritis is "diffuse idiopathic skeletal hyperostosis" or DISH. It affects between six and 12 percent of North Americans, usually people older than 50. DISH is classified as a form of degenerative arthritis and is characterized by the formation of excessive mineral deposits along the sides of the vertebrae in the neck and back. Symptoms of DISH include spine pain and stiffness and in advanced cases, difficulty swallowing and damage to spinal nerves. The cause of DISH is unknown and there are no specific treatments.

Now researchers at Western University's Bone and Joint Initiative, with collaborator Doo-Sup Choi at the Mayo Clinic in Rochester, Minnesota have discovered the first-ever mouse model of this disease. The research is published online in the Journal of Bone and Mineral Research.

"This model will allow us for the first time to uncover the mechanisms underlying DISH and related disorders. Knowledge of these mechanisms will ultimately allow us to test novel pharmacological treatments to reverse or slow the development of DISH in humans," says corresponding author Cheryle Séguin of the Skeletal Biology Laboratories and the Department of Physiology and Pharmacology at Western's Schulich School of Medicine & Dentistry.

Graduate student Derek Bone, working under the supervision of pharmacologist James Hammond, was studying mice that had been genetically modified to lack a specific membrane protein that transports adenosine when he noticed that these mice developed abnormal calcification (mineralization) of spinal structures.

Changes in the backbone of these mice were characterized by an interdisciplinary team which included: Sumeeta Warraich, Diana Quinonez, Hisataka Ii, Maria Drangova, David Holdsworth and Jeff Dixon. Their findings established that spinal mineralization in these mice resembles DISH in humans and point to a role for adenosine in causing abnormal mineralization in DISH.

These studies were funded by grants from the Canadian Institutes of Health Research and the Canadian Arthritis Network (CAN). Séguin is supported by a Network Scholar Award from The Arthritis Society and CAN.

Kathy Wallis | EurekAlert!
Further information:
http://www.uwo.ca

More articles from Health and Medicine:

nachricht On track to heal leukaemia
18.01.2017 | Universitätsspital Bern

nachricht Penn vet research identifies new target for taming Ebola
12.01.2017 | University of Pennsylvania

All articles from Health and Medicine >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: How gut bacteria can make us ill

HZI researchers decipher infection mechanisms of Yersinia and immune responses of the host

Yersiniae cause severe intestinal infections. Studies using Yersinia pseudotuberculosis as a model organism aim to elucidate the infection mechanisms of these...

Im Focus: Interfacial Superconductivity: Magnetic and superconducting order revealed simultaneously

Researchers from the University of Hamburg in Germany, in collaboration with colleagues from the University of Aarhus in Denmark, have synthesized a new superconducting material by growing a few layers of an antiferromagnetic transition-metal chalcogenide on a bismuth-based topological insulator, both being non-superconducting materials.

While superconductivity and magnetism are generally believed to be mutually exclusive, surprisingly, in this new material, superconducting correlations...

Im Focus: Studying fundamental particles in materials

Laser-driving of semimetals allows creating novel quasiparticle states within condensed matter systems and switching between different states on ultrafast time scales

Studying properties of fundamental particles in condensed matter systems is a promising approach to quantum field theory. Quasiparticles offer the opportunity...

Im Focus: Designing Architecture with Solar Building Envelopes

Among the general public, solar thermal energy is currently associated with dark blue, rectangular collectors on building roofs. Technologies are needed for aesthetically high quality architecture which offer the architect more room for manoeuvre when it comes to low- and plus-energy buildings. With the “ArKol” project, researchers at Fraunhofer ISE together with partners are currently developing two façade collectors for solar thermal energy generation, which permit a high degree of design flexibility: a strip collector for opaque façade sections and a solar thermal blind for transparent sections. The current state of the two developments will be presented at the BAU 2017 trade fair.

As part of the “ArKol – development of architecturally highly integrated façade collectors with heat pipes” project, Fraunhofer ISE together with its partners...

Im Focus: How to inflate a hardened concrete shell with a weight of 80 t

At TU Wien, an alternative for resource intensive formwork for the construction of concrete domes was developed. It is now used in a test dome for the Austrian Federal Railways Infrastructure (ÖBB Infrastruktur).

Concrete shells are efficient structures, but not very resource efficient. The formwork for the construction of concrete domes alone requires a high amount of...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

12V, 48V, high-voltage – trends in E/E automotive architecture

10.01.2017 | Event News

2nd Conference on Non-Textual Information on 10 and 11 May 2017 in Hannover

09.01.2017 | Event News

Nothing will happen without batteries making it happen!

05.01.2017 | Event News

 
Latest News

A big nano boost for solar cells

18.01.2017 | Power and Electrical Engineering

Glass's off-kilter harmonies

18.01.2017 | Materials Sciences

Toward a 'smart' patch that automatically delivers insulin when needed

18.01.2017 | Life Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>