Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:


Water's unexpected role in blood pressure control

Name a drink that can make you more alert for late-night studying, prevent you from fainting after giving blood, and even promote a teensy bit of weight loss.

Chances are you didn't say water. But that's the right answer.

Researchers at Vanderbilt University Medical Center have shown that ordinary water – without any additives – does more than just quench thirst. It has some other unexpected, physiological effects. It increases the activity of the sympathetic – fight or flight – nervous system, which raises alertness, blood pressure and energy expenditure.

David Robertson, M.D., and colleagues first observed water's curious ability to increase blood pressure about 10 years ago, in patients who had lost their baroreflexes – the system that keeps blood pressure within a normal range.

The observation came as a complete surprise, said Robertson, professor of Medicine, Pharmacology and Neurology.

"We had to unlearn the idea that water had no effect on blood pressure, which is what all medical students had been told until the last couple of years."

Although water does not significantly raise blood pressure in healthy young subjects with intact baroreflexes, the investigators found that it does increase sympathetic nervous system activity and constrict blood vessels (which prevents pooling of blood in the extremities).

These findings prompted the American Red Cross to conduct a study of water drinking as a method for reducing fainting responses. The study found that drinking 16 ounces of water before blood donation reduced the fainting response by 20 percent.

"This response to water may turn out to be very important for retaining blood donors," Robertson said. "If you pass out after giving blood, you pretty much never give blood again. If we can reduce fainting by 20 percent, we can reduce the unpleasantness of passing out and really bolster the number of people who can continue to be blood donors."

Julia McHugh, a student in Vanderbilt University School of Medicine's Medical Scientist Training Program, tackled the questions of where water is acting, and how, in a series of studies in mice. The team's latest findings are reported in the June issue of the journal Hypertension.

McHugh and colleagues found that water introduced directly into the stomach or duodenum (the first part of the small intestine) raised blood pressure, which ruled out an oral or esophageal mechanism for the response. They also tested a similar volume of saline (salt-containing solution). This did not raise blood pressure, which suggested that stretch of the tissues was not part of the mechanism and that perhaps water's lack of salt might be important.

The investigators ultimately determined that water dilutes the plasma in the blood vessels leading away from the duodenum and that this short-lived reduction in salt concentration (hypo-osmolality) is responsible for water's blood pressure-raising (pressor) effect. They implicated a protein called Trpv4 in the mechanism: mice lacking the Trpv4 gene did not have a pressor response to water.

While it is clear that water evokes a pressor response, the normal role for this physiological system is not certain.

Because it raises sympathetic nervous system activity – and consequently energy expenditure – it does promote weight loss, Robertson said.

"I calculated it might be as much as five pounds a year if you drank three 16 ounce glasses of water a day and nothing else changed. This is not going to be the answer to the weight problem in the United States, but it's interesting that activation of the sympathetic system is enough to do that."

McHugh said she found it fascinating that mice and humans share "such a primitive system, and yet we don't know why it's there or what beneficial effects it might have."

The newly discovered system and its molecular mediators – such as Trpv4 – may be targets for blood pressure regulation, particularly in situations of low blood pressure and fainting, the investigators said. The findings also suggest that investigators who use water as a control substance (a "non-drug") in studies may need to take water's pressor effects into account.

Robertson is the Elton Yates Professor of Autonomic Disorders. The National Institutes of Health provided funding for the research.

Leigh MacMillan | EurekAlert!
Further information:

All articles from Health and Medicine >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Space observation with radar to secure Germany's space infrastructure

Satellites in near-Earth orbit are at risk due to the steady increase in space debris. But their mission in the areas of telecommunications, navigation or weather forecasts is essential for society. Fraunhofer FHR therefore develops radar-based systems which allow the detection, tracking and cataloging of even the smallest particles of debris. Satellite operators who have access to our data are in a better position to plan evasive maneuvers and prevent destructive collisions. From April, 25-29 2018, Fraunhofer FHR and its partners will exhibit the complementary radar systems TIRA and GESTRA as well as the latest radar techniques for space observation across three stands at the ILA Berlin.

The "traffic situation" in space is very tense: the Earth is currently being orbited not only by countless satellites but also by a large volume of space...

Im Focus: Researchers Discover New Anti-Cancer Protein

An international team of researchers has discovered a new anti-cancer protein. The protein, called LHPP, prevents the uncontrolled proliferation of cancer cells in the liver. The researchers led by Prof. Michael N. Hall from the Biozentrum, University of Basel, report in “Nature” that LHPP can also serve as a biomarker for the diagnosis and prognosis of liver cancer.

The incidence of liver cancer, also known as hepatocellular carcinoma, is steadily increasing. In the last twenty years, the number of cases has almost doubled...

Im Focus: Researchers at Fraunhofer monitor re-entry of Chinese space station Tiangong-1

In just a few weeks from now, the Chinese space station Tiangong-1 will re-enter the Earth's atmosphere where it will to a large extent burn up. It is possible that some debris will reach the Earth's surface. Tiangong-1 is orbiting the Earth uncontrolled at a speed of approx. 29,000 km/h.Currently the prognosis relating to the time of impact currently lies within a window of several days. The scientists at Fraunhofer FHR have already been monitoring Tiangong-1 for a number of weeks with their TIRA system, one of the most powerful space observation radars in the world, with a view to supporting the German Space Situational Awareness Center and the ESA with their re-entry forecasts.

Following the loss of radio contact with Tiangong-1 in 2016 and due to the low orbital height, it is now inevitable that the Chinese space station will...

Im Focus: Alliance „OLED Licht Forum“ – Key partner for OLED lighting solutions

Fraunhofer Institute for Organic Electronics, Electron Beam and Plasma Technology FEP, provider of research and development services for OLED lighting solutions, announces the founding of the “OLED Licht Forum” and presents latest OLED design and lighting solutions during light+building, from March 18th – 23rd, 2018 in Frankfurt a.M./Germany, at booth no. F91 in Hall 4.0.

They are united in their passion for OLED (organic light emitting diodes) lighting with all of its unique facets and application possibilities. Thus experts in...

Im Focus: Mars' oceans formed early, possibly aided by massive volcanic eruptions

Oceans formed before Tharsis and evolved together, shaping climate history of Mars

A new scenario seeking to explain how Mars' putative oceans came and went over the last 4 billion years implies that the oceans formed several hundred million...

All Focus news of the innovation-report >>>



Industry & Economy
Event News

New solar solutions for sustainable buildings and cities

23.03.2018 | Event News

Virtual reality conference comes to Reutlingen

19.03.2018 | Event News

Ultrafast Wireless and Chip Design at the DATE Conference in Dresden

16.03.2018 | Event News

Latest News

For graphite pellets, just add elbow grease

23.03.2018 | Materials Sciences

Unique communication strategy discovered in stem cell pathway controlling plant growth

23.03.2018 | Agricultural and Forestry Science

Sharpening the X-ray view of the nanocosm

23.03.2018 | Physics and Astronomy

Science & Research
Overview of more VideoLinks >>>