Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Vitamin D levels associated with age-related macular degeneration

12.04.2011
Women under the age of 75 with high vitamin D status were less likely to have early age-related macular degeneration (AMD), the leading cause of irreversible vision loss in adults, a University at Buffalo study has shown. The disease affects approximately 9 percent of Americans aged 40 and older.

The paper is published in the April issue of "Archives of Ophthalmology," one of the JAMA/Archives journals.

Vitamin D status was assessed using the blood measure of 25-hydroxyvitamin D or 25 (OH) D. The 25 (OH) D level is generally considered the means by which nutritional vitamin D status is defined.

"In women younger than 75, those who had 25-hydroxyvitamin D concentrations lower than 38 nanomoles per liter were more likely to have age-related macular degeneration than women with concentrations greater than 38 nanomoles per liter," says Amy E. Millen, PhD, assistant professor in the UB School of Public Health and Health Professions and lead author. "Blood concentrations above 38 nanomoles per liter were associated with at least a 44 percent decreased odds of having AMD."

She notes that the Institute of Medicine considers an adult with a blood 25 hydroxyvitamin D concentration of lower than 30 nanomoles per liter to be at increased risk of vitamin D deficiency and a person with a concentration of less than 50 nanomoles per liter to be at increased risk for vitamin D inadequacy.

Millen's "Carotenoids in Age-Related Eye Disease Study (CAREDS)" involved data from 1,313 women. The purpose of the study was to investigate if serum 25 hydroxyvitamin D levels in the blood, the preferred biomarker for vitamin D, were associated with early age-related macular degeneration. CAREDS is an ancillary study within the Women's Health Initiative (WHI) Observational Study, which was conducted at WHI clinic centers in Oregon, Iowa and Wisconsin. UB is a major participating center in the WHI.

"The take- home message from this study is that having very low vitamin D status (25-hydroxyvitamin D blood concentrations lower than 38 nanomoles per liter) may be associated with increasing your odds of developing age-related macular degeneration," says Millen. "But based on these study findings, being at a higher vitamin D level than 38 nanomoles per liter does not appear to be more protective," she cautions.

Vitamin D status may be increased by spending moderate amounts of time outside, and eating foods rich in vitamin D, such as fatty fish from cold waters, and foods fortified with vitamin D, such as milk and fortified cereal, or by taking supplements.

"This is a promising study, but more still needs to be done," says Millen. "We still don't understand all of the effects of Vitamin D on health."

The research was funded by the NIH and by Research to Prevent Blindness.

The University at Buffalo is a premier research-intensive public university, a flagship institution in the State University of New York system and its largest and most comprehensive campus. UB's more than 28,000 students pursue their academic interests through more than 300 undergraduate, graduate and professional degree programs. Founded in 1846, the University at Buffalo is a member of the Association of American Universities.

Ellen Goldbaum | EurekAlert!
Further information:
http://www.buffalo.edu

More articles from Health and Medicine:

nachricht Researchers release the brakes on the immune system
18.10.2017 | Rheinische Friedrich-Wilhelms-Universität Bonn

nachricht Norovirus evades immune system by hiding out in rare gut cells
12.10.2017 | University of Pennsylvania School of Medicine

All articles from Health and Medicine >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Neutron star merger directly observed for the first time

University of Maryland researchers contribute to historic detection of gravitational waves and light created by event

On August 17, 2017, at 12:41:04 UTC, scientists made the first direct observation of a merger between two neutron stars--the dense, collapsed cores that remain...

Im Focus: Breaking: the first light from two neutron stars merging

Seven new papers describe the first-ever detection of light from a gravitational wave source. The event, caused by two neutron stars colliding and merging together, was dubbed GW170817 because it sent ripples through space-time that reached Earth on 2017 August 17. Around the world, hundreds of excited astronomers mobilized quickly and were able to observe the event using numerous telescopes, providing a wealth of new data.

Previous detections of gravitational waves have all involved the merger of two black holes, a feat that won the 2017 Nobel Prize in Physics earlier this month....

Im Focus: Smart sensors for efficient processes

Material defects in end products can quickly result in failures in many areas of industry, and have a massive impact on the safe use of their products. This is why, in the field of quality assurance, intelligent, nondestructive sensor systems play a key role. They allow testing components and parts in a rapid and cost-efficient manner without destroying the actual product or changing its surface. Experts from the Fraunhofer IZFP in Saarbrücken will be presenting two exhibits at the Blechexpo in Stuttgart from 7–10 November 2017 that allow fast, reliable, and automated characterization of materials and detection of defects (Hall 5, Booth 5306).

When quality testing uses time-consuming destructive test methods, it can result in enormous costs due to damaging or destroying the products. And given that...

Im Focus: Cold molecules on collision course

Using a new cooling technique MPQ scientists succeed at observing collisions in a dense beam of cold and slow dipolar molecules.

How do chemical reactions proceed at extremely low temperatures? The answer requires the investigation of molecular samples that are cold, dense, and slow at...

Im Focus: Shrinking the proton again!

Scientists from the Max Planck Institute of Quantum Optics, using high precision laser spectroscopy of atomic hydrogen, confirm the surprisingly small value of the proton radius determined from muonic hydrogen.

It was one of the breakthroughs of the year 2010: Laser spectroscopy of muonic hydrogen resulted in a value for the proton charge radius that was significantly...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

ASEAN Member States discuss the future role of renewable energy

17.10.2017 | Event News

World Health Summit 2017: International experts set the course for the future of Global Health

10.10.2017 | Event News

Climate Engineering Conference 2017 Opens in Berlin

10.10.2017 | Event News

 
Latest News

Osaka university researchers make the slipperiest surfaces adhesive

18.10.2017 | Materials Sciences

Space radiation won't stop NASA's human exploration

18.10.2017 | Physics and Astronomy

Los Alamos researchers and supercomputers help interpret the latest LIGO findings

18.10.2017 | Physics and Astronomy

VideoLinks
B2B-VideoLinks
More VideoLinks >>>