Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Vitamin D levels associated with age-related macular degeneration

12.04.2011
Women under the age of 75 with high vitamin D status were less likely to have early age-related macular degeneration (AMD), the leading cause of irreversible vision loss in adults, a University at Buffalo study has shown. The disease affects approximately 9 percent of Americans aged 40 and older.

The paper is published in the April issue of "Archives of Ophthalmology," one of the JAMA/Archives journals.

Vitamin D status was assessed using the blood measure of 25-hydroxyvitamin D or 25 (OH) D. The 25 (OH) D level is generally considered the means by which nutritional vitamin D status is defined.

"In women younger than 75, those who had 25-hydroxyvitamin D concentrations lower than 38 nanomoles per liter were more likely to have age-related macular degeneration than women with concentrations greater than 38 nanomoles per liter," says Amy E. Millen, PhD, assistant professor in the UB School of Public Health and Health Professions and lead author. "Blood concentrations above 38 nanomoles per liter were associated with at least a 44 percent decreased odds of having AMD."

She notes that the Institute of Medicine considers an adult with a blood 25 hydroxyvitamin D concentration of lower than 30 nanomoles per liter to be at increased risk of vitamin D deficiency and a person with a concentration of less than 50 nanomoles per liter to be at increased risk for vitamin D inadequacy.

Millen's "Carotenoids in Age-Related Eye Disease Study (CAREDS)" involved data from 1,313 women. The purpose of the study was to investigate if serum 25 hydroxyvitamin D levels in the blood, the preferred biomarker for vitamin D, were associated with early age-related macular degeneration. CAREDS is an ancillary study within the Women's Health Initiative (WHI) Observational Study, which was conducted at WHI clinic centers in Oregon, Iowa and Wisconsin. UB is a major participating center in the WHI.

"The take- home message from this study is that having very low vitamin D status (25-hydroxyvitamin D blood concentrations lower than 38 nanomoles per liter) may be associated with increasing your odds of developing age-related macular degeneration," says Millen. "But based on these study findings, being at a higher vitamin D level than 38 nanomoles per liter does not appear to be more protective," she cautions.

Vitamin D status may be increased by spending moderate amounts of time outside, and eating foods rich in vitamin D, such as fatty fish from cold waters, and foods fortified with vitamin D, such as milk and fortified cereal, or by taking supplements.

"This is a promising study, but more still needs to be done," says Millen. "We still don't understand all of the effects of Vitamin D on health."

The research was funded by the NIH and by Research to Prevent Blindness.

The University at Buffalo is a premier research-intensive public university, a flagship institution in the State University of New York system and its largest and most comprehensive campus. UB's more than 28,000 students pursue their academic interests through more than 300 undergraduate, graduate and professional degree programs. Founded in 1846, the University at Buffalo is a member of the Association of American Universities.

Ellen Goldbaum | EurekAlert!
Further information:
http://www.buffalo.edu

More articles from Health and Medicine:

nachricht Correct connections are crucial
26.06.2017 | Charité - Universitätsmedizin Berlin

nachricht One gene closer to regenerative therapy for muscular disorders
01.06.2017 | Cincinnati Children's Hospital Medical Center

All articles from Health and Medicine >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Can we see monkeys from space? Emerging technologies to map biodiversity

An international team of scientists has proposed a new multi-disciplinary approach in which an array of new technologies will allow us to map biodiversity and the risks that wildlife is facing at the scale of whole landscapes. The findings are published in Nature Ecology and Evolution. This international research is led by the Kunming Institute of Zoology from China, University of East Anglia, University of Leicester and the Leibniz Institute for Zoo and Wildlife Research.

Using a combination of satellite and ground data, the team proposes that it is now possible to map biodiversity with an accuracy that has not been previously...

Im Focus: Climate satellite: Tracking methane with robust laser technology

Heatwaves in the Arctic, longer periods of vegetation in Europe, severe floods in West Africa – starting in 2021, scientists want to explore the emissions of the greenhouse gas methane with the German-French satellite MERLIN. This is made possible by a new robust laser system of the Fraunhofer Institute for Laser Technology ILT in Aachen, which achieves unprecedented measurement accuracy.

Methane is primarily the result of the decomposition of organic matter. The gas has a 25 times greater warming potential than carbon dioxide, but is not as...

Im Focus: How protons move through a fuel cell

Hydrogen is regarded as the energy source of the future: It is produced with solar power and can be used to generate heat and electricity in fuel cells. Empa researchers have now succeeded in decoding the movement of hydrogen ions in crystals – a key step towards more efficient energy conversion in the hydrogen industry of tomorrow.

As charge carriers, electrons and ions play the leading role in electrochemical energy storage devices and converters such as batteries and fuel cells. Proton...

Im Focus: A unique data centre for cosmological simulations

Scientists from the Excellence Cluster Universe at the Ludwig-Maximilians-Universität Munich have establised "Cosmowebportal", a unique data centre for cosmological simulations located at the Leibniz Supercomputing Centre (LRZ) of the Bavarian Academy of Sciences. The complete results of a series of large hydrodynamical cosmological simulations are available, with data volumes typically exceeding several hundred terabytes. Scientists worldwide can interactively explore these complex simulations via a web interface and directly access the results.

With current telescopes, scientists can observe our Universe’s galaxies and galaxy clusters and their distribution along an invisible cosmic web. From the...

Im Focus: Scientists develop molecular thermometer for contactless measurement using infrared light

Temperature measurements possible even on the smallest scale / Molecular ruby for use in material sciences, biology, and medicine

Chemists at Johannes Gutenberg University Mainz (JGU) in cooperation with researchers of the German Federal Institute for Materials Research and Testing (BAM)...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Plants are networkers

19.06.2017 | Event News

Digital Survival Training for Executives

13.06.2017 | Event News

Global Learning Council Summit 2017

13.06.2017 | Event News

 
Latest News

Study shines light on brain cells that coordinate movement

26.06.2017 | Life Sciences

Smooth propagation of spin waves using gold

26.06.2017 | Physics and Astronomy

Switchable DNA mini-machines store information

26.06.2017 | Information Technology

VideoLinks
B2B-VideoLinks
More VideoLinks >>>