Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Virtual vehicle vibrations

12.02.2013
UI researcher designs program to predict role posture may play in reducing head, neck injuries

“Sit up straight in your chair!”


Computer models show postures of a tractor's operator in a field experimental study funded by the Injury Prevention Research Center. Images generated by John Meusch.

That command given by countless parents to their children may one day be delivered by vehicle designers to a robot that is actually a computerized model of a long-distance truck driver or other heavy equipment operator, thanks to a University of Iowa research program.

That’s because a UI researcher has designed a computer program that allows engineers to accurately predict the role posture plays in transferring the stress of vehicle motion to bone and muscle in the head and neck.

Titled "Human head-neck models in whole-body vibration: Effect of posture,” the paper is published in the online Jan. 3 issue of the Journal of Biomechanics.

Lead author Salam Rahmatalla, associate professor of civil and environmental engineering and research engineer at the Virtual Soldier Research (VSR) Program, a part of the College of Engineering's Center for Computer-Aided Design (CCAD), says that a computer model is needed.

“Studies have shown that awkward head-neck postures inside whole-body vibration environments can increase discomfort and the risk of injury,” he says. “The goal of this project is to introduce a computerized human model that can be used to predict human motion in response to whole-body vibration when the human takes different head-neck postures.”
He notes that the predicted motion data of his current model can be used to drive more sophisticated computer human models—with muscles and internal tissues—that can predict muscle forces and internal strain and stress between tissues and vertebrae.

Significantly, the computer program may reduce the need for actual human subjects to drive test vehicles.

“One major benefit of the current computer human model is the possibility of using it instead of humans in the design/modification loop of equipment in whole-body vibration,” he says.

Rahmatalla says a wide variety of industry, university, and other researcher venues likely will learn from his work.

“The automotive industry, and manufacturers of heavy machinery including construction, agriculture, mining, and military vehicles can benefit from the application of this model to the design of their equipment,” he says. “Also, human factors researchers and ergonomists can use this model to investigate the effect of head-neck posture on human response, performance, human machine interaction, and injury risk in whole-body vibration.”

Rahmatalla’s long-term VSR objective is to develop a virtual human capable of reproducing complex human responses to a whole body vibration environment that will help answer questions related to potential injury risks and design modifications.

Rahmatalla conducted the study by having 11 male participants sit in a vehicle simulator where they were subjected to white-noise random vibration and the acceleration data of the head and neck for each was recorded. The recorded motion data was used to calibrate the computer human model.

His colleague in the study was Yang Wang, a student in the UI Graduate College and CCAD graduate research assistant.
Contacts
Gary Galluzzo, University Communication and Marketing, 319-384-0009

Gary Galluzzo | EurekAlert!
Further information:
http://www.uiowa.edu

More articles from Health and Medicine:

nachricht Millions through license revenues
27.04.2017 | Rheinische Friedrich-Wilhelms-Universität Bonn

nachricht New High-Performance Center Translational Medical Engineering
26.04.2017 | Fraunhofer ITEM

All articles from Health and Medicine >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Making lightweight construction suitable for series production

More and more automobile companies are focusing on body parts made of carbon fiber reinforced plastics (CFRP). However, manufacturing and repair costs must be further reduced in order to make CFRP more economical in use. Together with the Volkswagen AG and five other partners in the project HolQueSt 3D, the Laser Zentrum Hannover e.V. (LZH) has developed laser processes for the automatic trimming, drilling and repair of three-dimensional components.

Automated manufacturing processes are the basis for ultimately establishing the series production of CFRP components. In the project HolQueSt 3D, the LZH has...

Im Focus: Wonder material? Novel nanotube structure strengthens thin films for flexible electronics

Reflecting the structure of composites found in nature and the ancient world, researchers at the University of Illinois at Urbana-Champaign have synthesized thin carbon nanotube (CNT) textiles that exhibit both high electrical conductivity and a level of toughness that is about fifty times higher than copper films, currently used in electronics.

"The structural robustness of thin metal films has significant importance for the reliable operation of smart skin and flexible electronics including...

Im Focus: Deep inside Galaxy M87

The nearby, giant radio galaxy M87 hosts a supermassive black hole (BH) and is well-known for its bright jet dominating the spectrum over ten orders of magnitude in frequency. Due to its proximity, jet prominence, and the large black hole mass, M87 is the best laboratory for investigating the formation, acceleration, and collimation of relativistic jets. A research team led by Silke Britzen from the Max Planck Institute for Radio Astronomy in Bonn, Germany, has found strong indication for turbulent processes connecting the accretion disk and the jet of that galaxy providing insights into the longstanding problem of the origin of astrophysical jets.

Supermassive black holes form some of the most enigmatic phenomena in astrophysics. Their enormous energy output is supposed to be generated by the...

Im Focus: A Quantum Low Pass for Photons

Physicists in Garching observe novel quantum effect that limits the number of emitted photons.

The probability to find a certain number of photons inside a laser pulse usually corresponds to a classical distribution of independent events, the so-called...

Im Focus: Microprocessors based on a layer of just three atoms

Microprocessors based on atomically thin materials hold the promise of the evolution of traditional processors as well as new applications in the field of flexible electronics. Now, a TU Wien research team led by Thomas Müller has made a breakthrough in this field as part of an ongoing research project.

Two-dimensional materials, or 2D materials for short, are extremely versatile, although – or often more precisely because – they are made up of just one or a...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Fighting drug resistant tuberculosis – InfectoGnostics meets MYCO-NET² partners in Peru

28.04.2017 | Event News

Expert meeting “Health Business Connect” will connect international medical technology companies

20.04.2017 | Event News

Wenn der Computer das Gehirn austrickst

18.04.2017 | Event News

 
Latest News

Wireless power can drive tiny electronic devices in the GI tract

28.04.2017 | Medical Engineering

Ice cave in Transylvania yields window into region's past

28.04.2017 | Earth Sciences

Nose2Brain – Better Therapy for Multiple Sclerosis

28.04.2017 | Life Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>