Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Virtual Sailing Simulator Shows Key Role of Recreation in Spinal Cord Injury Rehabilitation

21.11.2013
Kennedy Krieger Institute researchers find therapeutic benefits of virtual sailing

Researchers at the Kennedy Krieger Institute announced today the results of a pilot study demonstrating use of a virtual therapeutic sailing simulator as an important part of rehabilitation following a spinal cord injury (SCI).

Published in the American Journal of Physical Medicine & Rehabilitation, findings show that using a hands-on sailing simulator over a 12-week period helped participants safely learn sailing skills in a controlled environment, ultimately improving their quality of life by gaining the ability to participate in a recreational sport.

For many individuals living with paralysis, participation in recreational sports may seem impossible or even unimportant. This study is one of the first to scientifically quantify the positive impact of therapeutic sailing following a spinal cord injury, including a significant increase in overall self-confidence and sense of accomplishment among participants.

“Sports and recreation are a very important component of the rehabilitation process, not only for general physical well-being, but for improving overall quality of life for patients who have sustained spinal cord injuries,” says Dr. Albert Recio, study author and physician in the International Center for Spinal Cord Injury at Kennedy Krieger Institute. “We are very pleased with the results of this unique training program and hope that this type of recreational tool can also help in the rehabilitation of patients with other disabilities.”

Study participants had chronic spinal cord injuries that occurred more than six months prior to beginning use of the Virtual Sailing VSail-Trainer, the first sailing simulator available for people with paralysis. The stationary, motorized sailboat cockpit features specialized software that enables patients to navigate the boat around a virtual course in the same way as an actual sailboat in the water.

Electronic sensors give the participant real-time feedback that matches their movements and allows them to control wind strength and water conditions. Participants had no previous sailing experience and worked with the sailing simulator for one hour per week for 12 weeks.

During each session, a therapist assessed several physical and neurological indicators and compared the results to measurements taken prior to beginning the training program. All participants completed a questionnaire at the beginning and end of the study designed to evaluate their quality of life and self-esteem.

Results showed that:
All participants demonstrated rapid and substantial improvement in their sailing scores.
All patients showed a significant positive increase in overall quality of life, including increased self-confidence and sense of accomplishment.

Following completion of the training program, all subjects were able to successfully sail and perform specific maneuvers on the water at a sailing center in Baltimore, Md.

The results of this study provide preliminary evidence that the use of the Virtual Sailing’s VSail-Training technology in a safe, controlled environment enables individuals with SCI to learn the skills required to sail on the water and can result in quality of life improvements. Of note, the subjects were able to participate in a sports activity with their respective family members and experienced a sense of optimism about the future.

This pilot study involved only people with SCI; however, in principle this approach could be used with people with a wide range of injuries including loss of limbs and brain injury. Additional research will be required to develop the relevant protocols.

This study was supported by the Kennedy Krieger Institute‘s International Center for Spinal Cord Injury, the Johns Hopkins University and the University of Melbourne, Australia.

About the International Center for Spinal Cord Injury

The International Center for Spinal Cord Injury (ICSCI) at Kennedy Krieger Institute was founded in 2005 on the philosophy that individuals with paralysis can always hope for recovery of sensation, function, mobility, and independence, months and even years after injury. ICSCI is one of the first facilities in the world to combine innovative research with a unique focus on restoration and rehabilitation for children and adults with chronic paralysis. More than 2,000 patients from the U.S. and around the world have received treatment at the Center.

About the Kennedy Krieger Institute

Internationally recognized for improving the lives of children and adolescents with disorders and injuries of the brain and spinal cord, the Kennedy Krieger Institute in Baltimore, MD, serves more than 20,000 individuals each year through inpatient and outpatient clinics, home and community services and school-based programs. Kennedy Krieger provides a wide range of services for children with developmental concerns mild to severe, and is home to a team of investigators who are contributing to the understanding of how disorders develop while pioneering new interventions and earlier diagnosis.

Media Contact:

Megan Feffer
202-587-2581
mfeffer@spectrumscience.com

Megan Feffer | EurekAlert!
Further information:
http://www.kennedykrieger.org

Further reports about: Simulator injury quality of life spinal spinal cord spinal cord injuries

More articles from Health and Medicine:

nachricht Laser activated gold pyramids could deliver drugs, DNA into cells without harm
24.03.2017 | Harvard John A. Paulson School of Engineering and Applied Sciences

nachricht What does congenital Zika syndrome look like?
24.03.2017 | University of California - San Diego

All articles from Health and Medicine >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Giant Magnetic Fields in the Universe

Astronomers from Bonn and Tautenburg in Thuringia (Germany) used the 100-m radio telescope at Effelsberg to observe several galaxy clusters. At the edges of these large accumulations of dark matter, stellar systems (galaxies), hot gas, and charged particles, they found magnetic fields that are exceptionally ordered over distances of many million light years. This makes them the most extended magnetic fields in the universe known so far.

The results will be published on March 22 in the journal „Astronomy & Astrophysics“.

Galaxy clusters are the largest gravitationally bound structures in the universe. With a typical extent of about 10 million light years, i.e. 100 times the...

Im Focus: Tracing down linear ubiquitination

Researchers at the Goethe University Frankfurt, together with partners from the University of Tübingen in Germany and Queen Mary University as well as Francis Crick Institute from London (UK) have developed a novel technology to decipher the secret ubiquitin code.

Ubiquitin is a small protein that can be linked to other cellular proteins, thereby controlling and modulating their functions. The attachment occurs in many...

Im Focus: Perovskite edges can be tuned for optoelectronic performance

Layered 2D material improves efficiency for solar cells and LEDs

In the eternal search for next generation high-efficiency solar cells and LEDs, scientists at Los Alamos National Laboratory and their partners are creating...

Im Focus: Polymer-coated silicon nanosheets as alternative to graphene: A perfect team for nanoelectronics

Silicon nanosheets are thin, two-dimensional layers with exceptional optoelectronic properties very similar to those of graphene. Albeit, the nanosheets are less stable. Now researchers at the Technical University of Munich (TUM) have, for the first time ever, produced a composite material combining silicon nanosheets and a polymer that is both UV-resistant and easy to process. This brings the scientists a significant step closer to industrial applications like flexible displays and photosensors.

Silicon nanosheets are thin, two-dimensional layers with exceptional optoelectronic properties very similar to those of graphene. Albeit, the nanosheets are...

Im Focus: Researchers Imitate Molecular Crowding in Cells

Enzymes behave differently in a test tube compared with the molecular scrum of a living cell. Chemists from the University of Basel have now been able to simulate these confined natural conditions in artificial vesicles for the first time. As reported in the academic journal Small, the results are offering better insight into the development of nanoreactors and artificial organelles.

Enzymes behave differently in a test tube compared with the molecular scrum of a living cell. Chemists from the University of Basel have now been able to...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

International Land Use Symposium ILUS 2017: Call for Abstracts and Registration open

20.03.2017 | Event News

CONNECT 2017: International congress on connective tissue

14.03.2017 | Event News

ICTM Conference: Turbine Construction between Big Data and Additive Manufacturing

07.03.2017 | Event News

 
Latest News

Argon is not the 'dope' for metallic hydrogen

24.03.2017 | Materials Sciences

Astronomers find unexpected, dust-obscured star formation in distant galaxy

24.03.2017 | Physics and Astronomy

Gravitational wave kicks monster black hole out of galactic core

24.03.2017 | Physics and Astronomy

VideoLinks
B2B-VideoLinks
More VideoLinks >>>