Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Virtual Sailing Simulator Shows Key Role of Recreation in Spinal Cord Injury Rehabilitation

21.11.2013
Kennedy Krieger Institute researchers find therapeutic benefits of virtual sailing

Researchers at the Kennedy Krieger Institute announced today the results of a pilot study demonstrating use of a virtual therapeutic sailing simulator as an important part of rehabilitation following a spinal cord injury (SCI).

Published in the American Journal of Physical Medicine & Rehabilitation, findings show that using a hands-on sailing simulator over a 12-week period helped participants safely learn sailing skills in a controlled environment, ultimately improving their quality of life by gaining the ability to participate in a recreational sport.

For many individuals living with paralysis, participation in recreational sports may seem impossible or even unimportant. This study is one of the first to scientifically quantify the positive impact of therapeutic sailing following a spinal cord injury, including a significant increase in overall self-confidence and sense of accomplishment among participants.

“Sports and recreation are a very important component of the rehabilitation process, not only for general physical well-being, but for improving overall quality of life for patients who have sustained spinal cord injuries,” says Dr. Albert Recio, study author and physician in the International Center for Spinal Cord Injury at Kennedy Krieger Institute. “We are very pleased with the results of this unique training program and hope that this type of recreational tool can also help in the rehabilitation of patients with other disabilities.”

Study participants had chronic spinal cord injuries that occurred more than six months prior to beginning use of the Virtual Sailing VSail-Trainer, the first sailing simulator available for people with paralysis. The stationary, motorized sailboat cockpit features specialized software that enables patients to navigate the boat around a virtual course in the same way as an actual sailboat in the water.

Electronic sensors give the participant real-time feedback that matches their movements and allows them to control wind strength and water conditions. Participants had no previous sailing experience and worked with the sailing simulator for one hour per week for 12 weeks.

During each session, a therapist assessed several physical and neurological indicators and compared the results to measurements taken prior to beginning the training program. All participants completed a questionnaire at the beginning and end of the study designed to evaluate their quality of life and self-esteem.

Results showed that:
All participants demonstrated rapid and substantial improvement in their sailing scores.
All patients showed a significant positive increase in overall quality of life, including increased self-confidence and sense of accomplishment.

Following completion of the training program, all subjects were able to successfully sail and perform specific maneuvers on the water at a sailing center in Baltimore, Md.

The results of this study provide preliminary evidence that the use of the Virtual Sailing’s VSail-Training technology in a safe, controlled environment enables individuals with SCI to learn the skills required to sail on the water and can result in quality of life improvements. Of note, the subjects were able to participate in a sports activity with their respective family members and experienced a sense of optimism about the future.

This pilot study involved only people with SCI; however, in principle this approach could be used with people with a wide range of injuries including loss of limbs and brain injury. Additional research will be required to develop the relevant protocols.

This study was supported by the Kennedy Krieger Institute‘s International Center for Spinal Cord Injury, the Johns Hopkins University and the University of Melbourne, Australia.

About the International Center for Spinal Cord Injury

The International Center for Spinal Cord Injury (ICSCI) at Kennedy Krieger Institute was founded in 2005 on the philosophy that individuals with paralysis can always hope for recovery of sensation, function, mobility, and independence, months and even years after injury. ICSCI is one of the first facilities in the world to combine innovative research with a unique focus on restoration and rehabilitation for children and adults with chronic paralysis. More than 2,000 patients from the U.S. and around the world have received treatment at the Center.

About the Kennedy Krieger Institute

Internationally recognized for improving the lives of children and adolescents with disorders and injuries of the brain and spinal cord, the Kennedy Krieger Institute in Baltimore, MD, serves more than 20,000 individuals each year through inpatient and outpatient clinics, home and community services and school-based programs. Kennedy Krieger provides a wide range of services for children with developmental concerns mild to severe, and is home to a team of investigators who are contributing to the understanding of how disorders develop while pioneering new interventions and earlier diagnosis.

Media Contact:

Megan Feffer
202-587-2581
mfeffer@spectrumscience.com

Megan Feffer | EurekAlert!
Further information:
http://www.kennedykrieger.org

Further reports about: Simulator injury quality of life spinal spinal cord spinal cord injuries

More articles from Health and Medicine:

nachricht Organ-on-a-chip mimics heart's biomechanical properties
23.02.2017 | Vanderbilt University

nachricht Researchers identify cause of hereditary skeletal muscle disorder
22.02.2017 | Klinikum der Universität München

All articles from Health and Medicine >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Breakthrough with a chain of gold atoms

In the field of nanoscience, an international team of physicists with participants from Konstanz has achieved a breakthrough in understanding heat transport

In the field of nanoscience, an international team of physicists with participants from Konstanz has achieved a breakthrough in understanding heat transport

Im Focus: DNA repair: a new letter in the cell alphabet

Results reveal how discoveries may be hidden in scientific “blind spots”

Cells need to repair damaged DNA in our genes to prevent the development of cancer and other diseases. Our cells therefore activate and send “repair-proteins”...

Im Focus: Dresdner scientists print tomorrow’s world

The Fraunhofer IWS Dresden and Technische Universität Dresden inaugurated their jointly operated Center for Additive Manufacturing Dresden (AMCD) with a festive ceremony on February 7, 2017. Scientists from various disciplines perform research on materials, additive manufacturing processes and innovative technologies, which build up components in a layer by layer process. This technology opens up new horizons for component design and combinations of functions. For example during fabrication, electrical conductors and sensors are already able to be additively manufactured into components. They provide information about stress conditions of a product during operation.

The 3D-printing technology, or additive manufacturing as it is often called, has long made the step out of scientific research laboratories into industrial...

Im Focus: Mimicking nature's cellular architectures via 3-D printing

Research offers new level of control over the structure of 3-D printed materials

Nature does amazing things with limited design materials. Grass, for example, can support its own weight, resist strong wind loads, and recover after being...

Im Focus: Three Magnetic States for Each Hole

Nanometer-scale magnetic perforated grids could create new possibilities for computing. Together with international colleagues, scientists from the Helmholtz Zentrum Dresden-Rossendorf (HZDR) have shown how a cobalt grid can be reliably programmed at room temperature. In addition they discovered that for every hole ("antidot") three magnetic states can be configured. The results have been published in the journal "Scientific Reports".

Physicist Dr. Rantej Bali from the HZDR, together with scientists from Singapore and Australia, designed a special grid structure in a thin layer of cobalt in...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Booth and panel discussion – The Lindau Nobel Laureate Meetings at the AAAS 2017 Annual Meeting

13.02.2017 | Event News

Complex Loading versus Hidden Reserves

10.02.2017 | Event News

International Conference on Crystal Growth in Freiburg

09.02.2017 | Event News

 
Latest News

Stingless bees have their nests protected by soldiers

24.02.2017 | Life Sciences

New risk factors for anxiety disorders

24.02.2017 | Life Sciences

MWC 2017: 5G Capital Berlin

24.02.2017 | Trade Fair News

VideoLinks
B2B-VideoLinks
More VideoLinks >>>