Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Vanishing capillaries

23.03.2017

Diabetes damages small blood vessels around the heart and increases the risk of a heart attack

Diabetics have a significantly higher risk of suffering a heart attack. A research team at the Technical University of Munich (TUM) has now identified one of the causes: Diabetes is associated with the loss of small blood vessels around the heart. This in turn affects the entire cardiac muscle. A genetic therapy that promotes the growth of blood vessels may offer a remedy.


This coronary agiography shows how the heart's large blood vessels branch out into smaller ones.

image: kalus/istockphoto

source: TUM

The coronary vessels can be compared to a road network. Veins and arteries form the main transportation routes, with countless small and minuscule connecting roads and access pathways branching off from them. If one of these little pathways is blocked, it has very little impact on the overall traffic flow. But if enough of the off-ramps are closed, the traffic on the main highway becomes very dense. In a worst-case scenario, the entire system comes to a standstill: a heart attack.

A team headed by TUM has found out that diabetes can lead to these very conditions. The scientists working with Dr. Rabea Hinkel and Prof. Christian Kupatt, cardiologists at TUM's Klinikum rechts der Isar, have reported their results in the Journal of the American College of Cardiology.

Differences between hearts of patients with and without diabetes

In their research they compared blood vessels of patients with and without diabetes undergoing heart transplants. The conclusion: The samples from diabetics showed significantly reduced numbers of small blood vessels around the heart.

In the laboratory the team was able to show that elevated blood sugar levels are associated with a loss of cells known as pericytes. "These cells normally form a layer wrapped around the small blood vessels," explains Rabea Hinkel. "We believe that this layer has a stabilizing function. When it is damaged, the entire blood vessel becomes unstable and ultimately breaks up."

Animal experiments confirmed the assumption of a steady decrease in capillary density around the heart when diabetes is left untreated. "Diabetes often remains undetected in patients for years or even decades. Over that long period, massive damage can occur," says Rabea Hinkel.

Therapy with thymosin beta 4

The loss of capillaries is not irreversible, however. In their study, Hinkel and Kupatt applied a genetic therapy to stimulate heart cells to increase production of the molecule thymosin beta 4, a protein whose effects include stimulating the growth of pericytes. In this way, the team at TUM was able to induce the growth of lasting and functional capillary networks.

"It will be a while before this kind of therapy can be used in humans," says Christian Kupatt. "But we were able to show for the first time in a transgenic large animal model, which closely models human type I diabetes mellitus, how diabetes damages the heart. That opens up new perspectives for treating patients. It also further reinforces our awareness of how important it is to diagnose diabetes early."

Publication:

R. Hinkel, A. Hoewe, S. Renner, J. Ng, S. Lee, K. Klett, V. Kaczmarek, A. Moretti, K.-L. Laugwitz, P. Skroblin, M. Mayr, H. Milting, A. Dendorfer, B.Reichart, E. Wolf, C. Kupatt, "Diabetes Mellitus–Induced Microvascular Destabilization in the Myocardium", Journal of the American College of Cardiology 69:2 (2007). DOI: 10.1016/j.jacc.2016.10.058.

Contact:

Prof. Dr. med. Christian Kupatt
I. Medizinische Klinik und Poliklinik
Klinikum rechts der Isar
Technical University of Munich
Tel: +49 89 4140 2947
christian.kupatt@tum.de

Dr. Rabea Hinkel
I. Medizinische Klinik und Poliklinik
Klinikum rechts der Isar
Technical University of Munich
rabea.hinkel@tum.de

Dr. Ulrich Marsch | Technische Universität München
Further information:
http://www.tum.de

More articles from Health and Medicine:

nachricht GLUT5 fluorescent probe fingerprints cancer cells
20.04.2018 | Michigan Technological University

nachricht Scientists re-create brain neurons to study obesity and personalize treatment
20.04.2018 | Cedars-Sinai Medical Center

All articles from Health and Medicine >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Spider silk key to new bone-fixing composite

University of Connecticut researchers have created a biodegradable composite made of silk fibers that can be used to repair broken load-bearing bones without the complications sometimes presented by other materials.

Repairing major load-bearing bones such as those in the leg can be a long and uncomfortable process.

Im Focus: Writing and deleting magnets with lasers

Study published in the journal ACS Applied Materials & Interfaces is the outcome of an international effort that included teams from Dresden and Berlin in Germany, and the US.

Scientists at the Helmholtz-Zentrum Dresden-Rossendorf (HZDR) together with colleagues from the Helmholtz-Zentrum Berlin (HZB) and the University of Virginia...

Im Focus: Gamma-ray flashes from plasma filaments

Novel highly efficient and brilliant gamma-ray source: Based on model calculations, physicists of the Max PIanck Institute for Nuclear Physics in Heidelberg propose a novel method for an efficient high-brilliance gamma-ray source. A giant collimated gamma-ray pulse is generated from the interaction of a dense ultra-relativistic electron beam with a thin solid conductor. Energetic gamma-rays are copiously produced as the electron beam splits into filaments while propagating across the conductor. The resulting gamma-ray energy and flux enable novel experiments in nuclear and fundamental physics.

The typical wavelength of light interacting with an object of the microcosm scales with the size of this object. For atoms, this ranges from visible light to...

Im Focus: Basel researchers succeed in cultivating cartilage from stem cells

Stable joint cartilage can be produced from adult stem cells originating from bone marrow. This is made possible by inducing specific molecular processes occurring during embryonic cartilage formation, as researchers from the University and University Hospital of Basel report in the scientific journal PNAS.

Certain mesenchymal stem/stromal cells from the bone marrow of adults are considered extremely promising for skeletal tissue regeneration. These adult stem...

Im Focus: Like a wedge in a hinge

Researchers lay groundwork to tailor drugs for new targets in cancer therapy

In the fight against cancer, scientists are developing new drugs to hit tumor cells at so far unused weak points. Such a “sore spot” is the protein complex...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

Invitation to the upcoming "Current Topics in Bioinformatics: Big Data in Genomics and Medicine"

13.04.2018 | Event News

Unique scope of UV LED technologies and applications presented in Berlin: ICULTA-2018

12.04.2018 | Event News

IWOLIA: A conference bringing together German Industrie 4.0 and French Industrie du Futur

09.04.2018 | Event News

 
Latest News

Magnetic nano-imaging on a table top

20.04.2018 | Physics and Astronomy

Start of work for the world's largest electric truck

20.04.2018 | Interdisciplinary Research

Atoms may hum a tune from grand cosmic symphony

20.04.2018 | Physics and Astronomy

VideoLinks
Science & Research
Overview of more VideoLinks >>>