Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Vanishing capillaries

23.03.2017

Diabetes damages small blood vessels around the heart and increases the risk of a heart attack

Diabetics have a significantly higher risk of suffering a heart attack. A research team at the Technical University of Munich (TUM) has now identified one of the causes: Diabetes is associated with the loss of small blood vessels around the heart. This in turn affects the entire cardiac muscle. A genetic therapy that promotes the growth of blood vessels may offer a remedy.


This coronary agiography shows how the heart's large blood vessels branch out into smaller ones.

image: kalus/istockphoto

source: TUM

The coronary vessels can be compared to a road network. Veins and arteries form the main transportation routes, with countless small and minuscule connecting roads and access pathways branching off from them. If one of these little pathways is blocked, it has very little impact on the overall traffic flow. But if enough of the off-ramps are closed, the traffic on the main highway becomes very dense. In a worst-case scenario, the entire system comes to a standstill: a heart attack.

A team headed by TUM has found out that diabetes can lead to these very conditions. The scientists working with Dr. Rabea Hinkel and Prof. Christian Kupatt, cardiologists at TUM's Klinikum rechts der Isar, have reported their results in the Journal of the American College of Cardiology.

Differences between hearts of patients with and without diabetes

In their research they compared blood vessels of patients with and without diabetes undergoing heart transplants. The conclusion: The samples from diabetics showed significantly reduced numbers of small blood vessels around the heart.

In the laboratory the team was able to show that elevated blood sugar levels are associated with a loss of cells known as pericytes. "These cells normally form a layer wrapped around the small blood vessels," explains Rabea Hinkel. "We believe that this layer has a stabilizing function. When it is damaged, the entire blood vessel becomes unstable and ultimately breaks up."

Animal experiments confirmed the assumption of a steady decrease in capillary density around the heart when diabetes is left untreated. "Diabetes often remains undetected in patients for years or even decades. Over that long period, massive damage can occur," says Rabea Hinkel.

Therapy with thymosin beta 4

The loss of capillaries is not irreversible, however. In their study, Hinkel and Kupatt applied a genetic therapy to stimulate heart cells to increase production of the molecule thymosin beta 4, a protein whose effects include stimulating the growth of pericytes. In this way, the team at TUM was able to induce the growth of lasting and functional capillary networks.

"It will be a while before this kind of therapy can be used in humans," says Christian Kupatt. "But we were able to show for the first time in a transgenic large animal model, which closely models human type I diabetes mellitus, how diabetes damages the heart. That opens up new perspectives for treating patients. It also further reinforces our awareness of how important it is to diagnose diabetes early."

Publication:

R. Hinkel, A. Hoewe, S. Renner, J. Ng, S. Lee, K. Klett, V. Kaczmarek, A. Moretti, K.-L. Laugwitz, P. Skroblin, M. Mayr, H. Milting, A. Dendorfer, B.Reichart, E. Wolf, C. Kupatt, "Diabetes Mellitus–Induced Microvascular Destabilization in the Myocardium", Journal of the American College of Cardiology 69:2 (2007). DOI: 10.1016/j.jacc.2016.10.058.

Contact:

Prof. Dr. med. Christian Kupatt
I. Medizinische Klinik und Poliklinik
Klinikum rechts der Isar
Technical University of Munich
Tel: +49 89 4140 2947
christian.kupatt@tum.de

Dr. Rabea Hinkel
I. Medizinische Klinik und Poliklinik
Klinikum rechts der Isar
Technical University of Munich
rabea.hinkel@tum.de

Dr. Ulrich Marsch | Technische Universität München
Further information:
http://www.tum.de

More articles from Health and Medicine:

nachricht How cancer metastasis happens: Researchers reveal a key mechanism
19.01.2018 | Weill Cornell Medicine

nachricht Researchers identify new way to unmask melanoma cells to the immune system
17.01.2018 | Duke University Medical Center

All articles from Health and Medicine >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Artificial agent designs quantum experiments

On the way to an intelligent laboratory, physicists from Innsbruck and Vienna present an artificial agent that autonomously designs quantum experiments. In initial experiments, the system has independently (re)discovered experimental techniques that are nowadays standard in modern quantum optical laboratories. This shows how machines could play a more creative role in research in the future.

We carry smartphones in our pockets, the streets are dotted with semi-autonomous cars, but in the research laboratory experiments are still being designed by...

Im Focus: Scientists decipher key principle behind reaction of metalloenzymes

So-called pre-distorted states accelerate photochemical reactions too

What enables electrons to be transferred swiftly, for example during photosynthesis? An interdisciplinary team of researchers has worked out the details of how...

Im Focus: The first precise measurement of a single molecule's effective charge

For the first time, scientists have precisely measured the effective electrical charge of a single molecule in solution. This fundamental insight of an SNSF Professor could also pave the way for future medical diagnostics.

Electrical charge is one of the key properties that allows molecules to interact. Life itself depends on this phenomenon: many biological processes involve...

Im Focus: Paradigm shift in Paris: Encouraging an holistic view of laser machining

At the JEC World Composite Show in Paris in March 2018, the Fraunhofer Institute for Laser Technology ILT will be focusing on the latest trends and innovations in laser machining of composites. Among other things, researchers at the booth shared with the Aachen Center for Integrative Lightweight Production (AZL) will demonstrate how lasers can be used for joining, structuring, cutting and drilling composite materials.

No other industry has attracted as much public attention to composite materials as the automotive industry, which along with the aerospace industry is a driver...

Im Focus: Room-temperature multiferroic thin films and their properties

Scientists at Tokyo Institute of Technology (Tokyo Tech) and Tohoku University have developed high-quality GFO epitaxial films and systematically investigated their ferroelectric and ferromagnetic properties. They also demonstrated the room-temperature magnetocapacitance effects of these GFO thin films.

Multiferroic materials show magnetically driven ferroelectricity. They are attracting increasing attention because of their fascinating properties such as...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

10th International Symposium: “Advanced Battery Power – Kraftwerk Batterie” Münster, 10-11 April 2018

08.01.2018 | Event News

See, understand and experience the work of the future

11.12.2017 | Event News

Innovative strategies to tackle parasitic worms

08.12.2017 | Event News

 
Latest News

Let the good tubes roll

19.01.2018 | Materials Sciences

How cancer metastasis happens: Researchers reveal a key mechanism

19.01.2018 | Health and Medicine

Meteoritic stardust unlocks timing of supernova dust formation

19.01.2018 | Physics and Astronomy

VideoLinks
B2B-VideoLinks
More VideoLinks >>>