Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Vaccine against Chlamydia not far away

16.11.2009
When a woman becomes infected with Chlamydia, the first white blood cells that arrive at the scene to fight the infection are not the most effective. This is shown by a thesis from the Sahlgrenska Academy.

This discovery could pave the way for the relatively rapid development of a vaccine against Chlamydia.

"Now that we know how the body defends itself against the Chlamydia bacteria, we can develop a vaccine that optimises that defence. We have a basic understanding of how the vaccine could work, but some work remains to be done. We believe that it will take a few years before the vaccine becomes a reality," says researcher Ellen Marks, the author of the thesis.

The body defends itself against infections with a type of white cell called the T lymphocyte. When these blood cells take on the bacteria, they trigger an inflammation that can damage tissue, so there are also other similar blood cells whose main task is to reduce the inflammation and protect tissue. Ellen Marks and her colleagues are the first research team to discover that these anti-inflammatory forces predominate in the lower parts of the female genital tract, mainly mediated by a hormone called IL-10, which is highly protective against tissue damage.

"The result is that the T lymphocytes that could fight Chlamydia are not concentrated in the lower vagina, and the infection can move up towards the womb and fallopian tubes relatively unhindered," says Ellen Marks.

The research team already has a concept of how a vaccine based on this new understanding could work, and they have also tested it on mice.

"The method of administration is an important remaining issue. Previous research has shown that injections don't work, and so the vaccine will probably need to be given either as a nasal spray or in the form of a cream applied into the vagina," says Ellen Marks.

This research is being done at MIVAC (the Mucosal Immunology and Vaccine Center) - the Sahlgrenska Academy's strategic research centre. Researchers at the centre are developing novel methods of treating diseases that affect our mucous membranes.

FACTS ABOUT CHLAMYDIA
The incidence of Chlamydia infection in Sweden has increased since the mid-nineties, especially in people under the age of 24. Last year, over 40 000 new cases were reported to the Swedish Institute for Infectious Disease Control. The disease is caused by the bacterium Chlamydia trachomatis, which is transmitted by unprotected sexual contact. Many don't realise that they have been infected, because Chlamydia infection often has no symptoms at all. Without effective antibiotic treatment the infection can become chronic and may even lead to infertility.
For further information, please contact:
Ellen Marks, tel. +46 (0)31-786 63 02 or +46 (0)73-710 46 24, ellen.marks@immuno.ge.se
Supervisor:-ma
Professor Nils Lycke, tel. +46 (0)31-786 63 21, nils.lycke@microbio.gu.se
Thesis for the degree of Doctor of Medical Science at the Department of Microbiology and Immunology, Institute of Biomedicine, the Sahlgrenska Academy.

Title of thesis: Genital tract CD4+ T cells for vaccination and protection against Chlamydia trachomatis

The thesis has been defended.

You can read the complete thesis here: http://hdl.handle.net/2077/21075

Helena Aaberg | idw
Further information:
http://hdl.handle.net/2077/21075
http://www.sahlgrenska.gu.se/english/

More articles from Health and Medicine:

nachricht The end of pneumonia? New vaccine offers hope
23.10.2017 | University at Buffalo

nachricht Scientists track ovarian cancers to site of origin: Fallopian tubes
23.10.2017 | Johns Hopkins Medicine

All articles from Health and Medicine >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Salmonella as a tumour medication

HZI researchers developed a bacterial strain that can be used in cancer therapy

Salmonellae are dangerous pathogens that enter the body via contaminated food and can cause severe infections. But these bacteria are also known to target...

Im Focus: Neutron star merger directly observed for the first time

University of Maryland researchers contribute to historic detection of gravitational waves and light created by event

On August 17, 2017, at 12:41:04 UTC, scientists made the first direct observation of a merger between two neutron stars--the dense, collapsed cores that remain...

Im Focus: Breaking: the first light from two neutron stars merging

Seven new papers describe the first-ever detection of light from a gravitational wave source. The event, caused by two neutron stars colliding and merging together, was dubbed GW170817 because it sent ripples through space-time that reached Earth on 2017 August 17. Around the world, hundreds of excited astronomers mobilized quickly and were able to observe the event using numerous telescopes, providing a wealth of new data.

Previous detections of gravitational waves have all involved the merger of two black holes, a feat that won the 2017 Nobel Prize in Physics earlier this month....

Im Focus: Smart sensors for efficient processes

Material defects in end products can quickly result in failures in many areas of industry, and have a massive impact on the safe use of their products. This is why, in the field of quality assurance, intelligent, nondestructive sensor systems play a key role. They allow testing components and parts in a rapid and cost-efficient manner without destroying the actual product or changing its surface. Experts from the Fraunhofer IZFP in Saarbrücken will be presenting two exhibits at the Blechexpo in Stuttgart from 7–10 November 2017 that allow fast, reliable, and automated characterization of materials and detection of defects (Hall 5, Booth 5306).

When quality testing uses time-consuming destructive test methods, it can result in enormous costs due to damaging or destroying the products. And given that...

Im Focus: Cold molecules on collision course

Using a new cooling technique MPQ scientists succeed at observing collisions in a dense beam of cold and slow dipolar molecules.

How do chemical reactions proceed at extremely low temperatures? The answer requires the investigation of molecular samples that are cold, dense, and slow at...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

3rd Symposium on Driving Simulation

23.10.2017 | Event News

ASEAN Member States discuss the future role of renewable energy

17.10.2017 | Event News

World Health Summit 2017: International experts set the course for the future of Global Health

10.10.2017 | Event News

 
Latest News

Microfluidics probe 'cholesterol' of the oil industry

23.10.2017 | Life Sciences

Gamma rays will reach beyond the limits of light

23.10.2017 | Physics and Astronomy

The end of pneumonia? New vaccine offers hope

23.10.2017 | Health and Medicine

VideoLinks
B2B-VideoLinks
More VideoLinks >>>