Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Vaccine against Chlamydia not far away

16.11.2009
When a woman becomes infected with Chlamydia, the first white blood cells that arrive at the scene to fight the infection are not the most effective. This is shown by a thesis from the Sahlgrenska Academy.

This discovery could pave the way for the relatively rapid development of a vaccine against Chlamydia.

"Now that we know how the body defends itself against the Chlamydia bacteria, we can develop a vaccine that optimises that defence. We have a basic understanding of how the vaccine could work, but some work remains to be done. We believe that it will take a few years before the vaccine becomes a reality," says researcher Ellen Marks, the author of the thesis.

The body defends itself against infections with a type of white cell called the T lymphocyte. When these blood cells take on the bacteria, they trigger an inflammation that can damage tissue, so there are also other similar blood cells whose main task is to reduce the inflammation and protect tissue. Ellen Marks and her colleagues are the first research team to discover that these anti-inflammatory forces predominate in the lower parts of the female genital tract, mainly mediated by a hormone called IL-10, which is highly protective against tissue damage.

"The result is that the T lymphocytes that could fight Chlamydia are not concentrated in the lower vagina, and the infection can move up towards the womb and fallopian tubes relatively unhindered," says Ellen Marks.

The research team already has a concept of how a vaccine based on this new understanding could work, and they have also tested it on mice.

"The method of administration is an important remaining issue. Previous research has shown that injections don't work, and so the vaccine will probably need to be given either as a nasal spray or in the form of a cream applied into the vagina," says Ellen Marks.

This research is being done at MIVAC (the Mucosal Immunology and Vaccine Center) - the Sahlgrenska Academy's strategic research centre. Researchers at the centre are developing novel methods of treating diseases that affect our mucous membranes.

FACTS ABOUT CHLAMYDIA
The incidence of Chlamydia infection in Sweden has increased since the mid-nineties, especially in people under the age of 24. Last year, over 40 000 new cases were reported to the Swedish Institute for Infectious Disease Control. The disease is caused by the bacterium Chlamydia trachomatis, which is transmitted by unprotected sexual contact. Many don't realise that they have been infected, because Chlamydia infection often has no symptoms at all. Without effective antibiotic treatment the infection can become chronic and may even lead to infertility.
For further information, please contact:
Ellen Marks, tel. +46 (0)31-786 63 02 or +46 (0)73-710 46 24, ellen.marks@immuno.ge.se
Supervisor:-ma
Professor Nils Lycke, tel. +46 (0)31-786 63 21, nils.lycke@microbio.gu.se
Thesis for the degree of Doctor of Medical Science at the Department of Microbiology and Immunology, Institute of Biomedicine, the Sahlgrenska Academy.

Title of thesis: Genital tract CD4+ T cells for vaccination and protection against Chlamydia trachomatis

The thesis has been defended.

You can read the complete thesis here: http://hdl.handle.net/2077/21075

Helena Aaberg | idw
Further information:
http://hdl.handle.net/2077/21075
http://www.sahlgrenska.gu.se/english/

More articles from Health and Medicine:

nachricht A promising target for kidney fibrosis
21.04.2017 | Brigham and Women's Hospital

nachricht Stem cell transplants: activating signal paths may protect from graft-versus-host disease
20.04.2017 | Technische Universität München

All articles from Health and Medicine >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Deep inside Galaxy M87

The nearby, giant radio galaxy M87 hosts a supermassive black hole (BH) and is well-known for its bright jet dominating the spectrum over ten orders of magnitude in frequency. Due to its proximity, jet prominence, and the large black hole mass, M87 is the best laboratory for investigating the formation, acceleration, and collimation of relativistic jets. A research team led by Silke Britzen from the Max Planck Institute for Radio Astronomy in Bonn, Germany, has found strong indication for turbulent processes connecting the accretion disk and the jet of that galaxy providing insights into the longstanding problem of the origin of astrophysical jets.

Supermassive black holes form some of the most enigmatic phenomena in astrophysics. Their enormous energy output is supposed to be generated by the...

Im Focus: A Quantum Low Pass for Photons

Physicists in Garching observe novel quantum effect that limits the number of emitted photons.

The probability to find a certain number of photons inside a laser pulse usually corresponds to a classical distribution of independent events, the so-called...

Im Focus: Microprocessors based on a layer of just three atoms

Microprocessors based on atomically thin materials hold the promise of the evolution of traditional processors as well as new applications in the field of flexible electronics. Now, a TU Wien research team led by Thomas Müller has made a breakthrough in this field as part of an ongoing research project.

Two-dimensional materials, or 2D materials for short, are extremely versatile, although – or often more precisely because – they are made up of just one or a...

Im Focus: Quantum-physical Model System

Computer-assisted methods aid Heidelberg physicists in reproducing experiment with ultracold atoms

Two researchers at Heidelberg University have developed a model system that enables a better understanding of the processes in a quantum-physical experiment...

Im Focus: Glacier bacteria’s contribution to carbon cycling

Glaciers might seem rather inhospitable environments. However, they are home to a diverse and vibrant microbial community. It’s becoming increasingly clear that they play a bigger role in the carbon cycle than previously thought.

A new study, now published in the journal Nature Geoscience, shows how microbial communities in melting glaciers contribute to the Earth’s carbon cycle, a...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Expert meeting “Health Business Connect” will connect international medical technology companies

20.04.2017 | Event News

Wenn der Computer das Gehirn austrickst

18.04.2017 | Event News

7th International Conference on Crystalline Silicon Photovoltaics in Freiburg on April 3-5, 2017

03.04.2017 | Event News

 
Latest News

New quantum liquid crystals may play role in future of computers

21.04.2017 | Physics and Astronomy

A promising target for kidney fibrosis

21.04.2017 | Health and Medicine

Light rays from a supernova bent by the curvature of space-time around a galaxy

21.04.2017 | Physics and Astronomy

VideoLinks
B2B-VideoLinks
More VideoLinks >>>