Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:


Vaccine against Chlamydia not far away

When a woman becomes infected with Chlamydia, the first white blood cells that arrive at the scene to fight the infection are not the most effective. This is shown by a thesis from the Sahlgrenska Academy.

This discovery could pave the way for the relatively rapid development of a vaccine against Chlamydia.

"Now that we know how the body defends itself against the Chlamydia bacteria, we can develop a vaccine that optimises that defence. We have a basic understanding of how the vaccine could work, but some work remains to be done. We believe that it will take a few years before the vaccine becomes a reality," says researcher Ellen Marks, the author of the thesis.

The body defends itself against infections with a type of white cell called the T lymphocyte. When these blood cells take on the bacteria, they trigger an inflammation that can damage tissue, so there are also other similar blood cells whose main task is to reduce the inflammation and protect tissue. Ellen Marks and her colleagues are the first research team to discover that these anti-inflammatory forces predominate in the lower parts of the female genital tract, mainly mediated by a hormone called IL-10, which is highly protective against tissue damage.

"The result is that the T lymphocytes that could fight Chlamydia are not concentrated in the lower vagina, and the infection can move up towards the womb and fallopian tubes relatively unhindered," says Ellen Marks.

The research team already has a concept of how a vaccine based on this new understanding could work, and they have also tested it on mice.

"The method of administration is an important remaining issue. Previous research has shown that injections don't work, and so the vaccine will probably need to be given either as a nasal spray or in the form of a cream applied into the vagina," says Ellen Marks.

This research is being done at MIVAC (the Mucosal Immunology and Vaccine Center) - the Sahlgrenska Academy's strategic research centre. Researchers at the centre are developing novel methods of treating diseases that affect our mucous membranes.

The incidence of Chlamydia infection in Sweden has increased since the mid-nineties, especially in people under the age of 24. Last year, over 40 000 new cases were reported to the Swedish Institute for Infectious Disease Control. The disease is caused by the bacterium Chlamydia trachomatis, which is transmitted by unprotected sexual contact. Many don't realise that they have been infected, because Chlamydia infection often has no symptoms at all. Without effective antibiotic treatment the infection can become chronic and may even lead to infertility.
For further information, please contact:
Ellen Marks, tel. +46 (0)31-786 63 02 or +46 (0)73-710 46 24,
Professor Nils Lycke, tel. +46 (0)31-786 63 21,
Thesis for the degree of Doctor of Medical Science at the Department of Microbiology and Immunology, Institute of Biomedicine, the Sahlgrenska Academy.

Title of thesis: Genital tract CD4+ T cells for vaccination and protection against Chlamydia trachomatis

The thesis has been defended.

You can read the complete thesis here:

Helena Aaberg | idw
Further information:

More articles from Health and Medicine:

nachricht Resolving the mystery of preeclampsia
21.10.2016 | Universitätsklinikum Magdeburg

nachricht New potential cancer treatment using microwaves to target deep tumors
12.10.2016 | University of Texas at Arlington

All articles from Health and Medicine >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: New 3-D wiring technique brings scalable quantum computers closer to reality

Researchers from the Institute for Quantum Computing (IQC) at the University of Waterloo led the development of a new extensible wiring technique capable of controlling superconducting quantum bits, representing a significant step towards to the realization of a scalable quantum computer.

"The quantum socket is a wiring method that uses three-dimensional wires based on spring-loaded pins to address individual qubits," said Jeremy Béjanin, a PhD...

Im Focus: Scientists develop a semiconductor nanocomposite material that moves in response to light

In a paper in Scientific Reports, a research team at Worcester Polytechnic Institute describes a novel light-activated phenomenon that could become the basis for applications as diverse as microscopic robotic grippers and more efficient solar cells.

A research team at Worcester Polytechnic Institute (WPI) has developed a revolutionary, light-activated semiconductor nanocomposite material that can be used...

Im Focus: Diamonds aren't forever: Sandia, Harvard team create first quantum computer bridge

By forcefully embedding two silicon atoms in a diamond matrix, Sandia researchers have demonstrated for the first time on a single chip all the components needed to create a quantum bridge to link quantum computers together.

"People have already built small quantum computers," says Sandia researcher Ryan Camacho. "Maybe the first useful one won't be a single giant quantum computer...

Im Focus: New Products - Highlights of COMPAMED 2016

COMPAMED has become the leading international marketplace for suppliers of medical manufacturing. The trade fair, which takes place every November and is co-located to MEDICA in Dusseldorf, has been steadily growing over the past years and shows that medical technology remains a rapidly growing market.

In 2016, the joint pavilion by the IVAM Microtechnology Network, the Product Market “High-tech for Medical Devices”, will be located in Hall 8a again and will...

Im Focus: Ultra-thin ferroelectric material for next-generation electronics

'Ferroelectric' materials can switch between different states of electrical polarization in response to an external electric field. This flexibility means they show promise for many applications, for example in electronic devices and computer memory. Current ferroelectric materials are highly valued for their thermal and chemical stability and rapid electro-mechanical responses, but creating a material that is scalable down to the tiny sizes needed for technologies like silicon-based semiconductors (Si-based CMOS) has proven challenging.

Now, Hiroshi Funakubo and co-workers at the Tokyo Institute of Technology, in collaboration with researchers across Japan, have conducted experiments to...

All Focus news of the innovation-report >>>



Event News

#IC2S2: When Social Science meets Computer Science - GESIS will host the IC2S2 conference 2017

14.10.2016 | Event News

Agricultural Trade Developments and Potentials in Central Asia and the South Caucasus

14.10.2016 | Event News

World Health Summit – Day Three: A Call to Action

12.10.2016 | Event News

Latest News

Resolving the mystery of preeclampsia

21.10.2016 | Health and Medicine

Stanford researchers create new special-purpose computer that may someday save us billions

21.10.2016 | Information Technology

From ancient fossils to future cars

21.10.2016 | Materials Sciences

More VideoLinks >>>